How machines learn

o By training over historical data
o Example task: Predict who will return loan

Usery | X, 1 | Xq2 | o | Xem | Z Returned
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o Learning challenge: Learn a decision boundary (W)

in the feature space separating the two classes




Predict who will return loans
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Predict who will return loans

Feature 2

Feature 1

Optimal (most accurate / least loss) linear boundary
But, how do machines find (compute) it?



Learning (computing) the optimal boundary

Define & optimize a loss (accuracy) function

o The loss function captures inaccuracy in prediction
N N

Lw)=> (yi—w'x;) L(w) =) —logp(y;|xi, W)

1=1 1=1
a Minimize (optimize) it over all examples in training data

minimize L(w)

Central challenge in machine learning

o Finding loss function that capture prediction loss, yet be
efficiently optimized
o Many loss functions used in learning are convex




‘ Convex-boundary based loss functions

N
Squared loss > i —dw(x:)?
N
Logistic loss —>_log(1 +e7¥dt)
=1

N
SVM loss [w[|?> +C > max(0,1 — yidw(x;))
1—=1




Predict who will return loans

Feature 2

Feature 1

Optimal (most accurate / least loss) linear boundary

But, how do machines find (compute) it?
o The boundary was computed using min > (v — dw(x;))?

=1



How to learn to avoid discrimination

Specify discrimination measures as constraints on

learning

Optimize for accuracy under those constraints

minimize L(w)

subject to Py #y

The constraints embed et

2=0)=P@H+ylz=1)

nics & values when learning

No free lunch: Additional constraints lower accuracy
o Tradeoff between performance & ethics (avoid discrimination)



A few observations

Any discrimination measure could be a constraint
minimize L(w)

subject to  P(g|x, z) = P(g|x)
1]

Might not need all constraints at the same time
o E.g., drop disp. impact constraint when no bias in data

o When avoiding disp. impact / mistreatment, we could
achieve higher accuracy without disp. treatment




Key technical challenge

How to learn efficiently under these constraints?

mainimize L(w)
subject to P(g=1/z=0)=P(y=1|z=1)

minimize L(w)
subject to  P(j#ylz=0) = P(§#ylz=1)

Problem: The above formulations are not convex!
o Can't learn them efficiently

Need to find a better way to specify the constraints
o So that loss function under constraints remains convex



‘ Disparate impact constraints: Intuition

Feature 2

Feature 1

PH=1z=0)=P({=1z=1)
Limit the differences in the acceptance (or rejection) ratios
across members of different sensitive groups




‘ Disparate impact constraints: Intuition

Feature 2

Feature 1

A proxy measure for P(j=1]z=0)=P(g=1]z=1)
Limit the differences in the average strength of acceptance
and rejection across members of different sensitive groups




Specifying disparate impact constraints

Instead of requiring: P(j=1]z=0)=P(j=1]z=1)

Bound covariance between items’ sensitive feature
values and their signed distance from classifier’s
decision boundary to less than a threshold

—Z WTXZ <cC

=1




‘ Learning classifiers w/o disparate
impact

o Previous formulation: Non-convex, hard-to-learn
mainimize L(w)
subject to P(g=1/z=0)=P(y=1|z=1)

o New formulation: Convex, easy-to-learn
minimize L(w)
| N
subject to N Z (z; —z)wix; <c

15
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A few observations

Our formulation can be applied to any convex-
margin (loss functions) based classifiers

o hinge-loss, logistic loss, linear and non-linear SVM

Can easily change our formulation to optimize for
fairness under accuracy constraints

o Useful in practice, when you want to be fair but have
business necessity to meet a certain accuracy threshold



‘ Specifying mistreatment constraints

Feature 2

Feature 1

Idea: Avg. misclassification distance from boundary for
both groups should be the same




‘ Specifying mistreatment constraints

min(0, y;dw(X;))

Concave
(dw(x) is affine)

Feature 2

Feature 1

Idea: Avg. misclassification distance from boundary for
both groups should be the same




‘ Rewriting mistreatment constraints

S.t. P(ytrue # Ypred | 9) = P(ytrue # Ypred | d')




‘ Rewriting mistreatment constraints

s.t. —e< i > min(0,ydw(x:)) — = me(O Yidw(X;)) < €

d
~ Concave |, =~ Concave
P(Ytrue # Ypred | d) P(Ytrue F* VYpred | 9)

o Can be solved efficiently

o Using Disciplined Convex-Concave Programming
o DCCP /Shen, Diamond, Gu, Boyd, 2016]




‘ Learning classifiers w/o disparate

mistreatment

o2 New formulation: Convex-concave, can learn
efficiently using convex-concave programming

minimaize L( )
Nl Zz 1gw(yz>xz) + N Zz 1gw(y@,xz) < C
_Nl Zz_l gw(yuxz) + No Zz_l gw(yz,xz) Z —C

subject to

All misclassifications  gw(y,x) = min(0, ydw (%)),

: I+y
False negatives 9w (Y, x) = min (0 —5 Ydw(x )) , or

. 1 —
False positives gw(y,x) = min (0 Tyd w(x )> :




Evaluation: Recidivism risk estimates

Recidivism: To re-offend within a certain time

COMPAS risk assessment tool

o Assign recidivism risk score to a criminal defendant
o Score used to advise judges' decision

ProPublica gathered COMPAS assessments
a Broward Country, FL for 2013-14

o Features: arrest charge, #prior offenses, age,...
a Class label: 2-year recidivism



Key evaluation questions

Do traditional classifiers suffer disparate mistreatment?

Can our approach help avoid disparate mistreatment?



Disparity in mistreatment

Trained logistic regression for recidivism prediction

Race FPR FNR
Black 34% 32%
White 15% 55%

False positive: Non-recidivating person wrongly
classified as recidivating

False negative: Recidivating person wrongly
classified as non-recidivating



Key evaluation questions

Do traditional classifiers suffer disparate mistreatment?
a Yes! Considerable disparity in both FPR and FNR

Can our approach help avoid disparate mistreatment?



Removing disparate mistreatment

Traditional classifiers without constraints
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Removing disparate mistreatment

Introducing our FPR and FNR Constraints
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Key evaluation questions

Do traditional classifiers suffer disparate mistreatment?
a Yes! Considerable disparity in both FPR and FNR

Can our approach help avoid disparate mistreatment?
o Yes! For a small loss in accuracy



From Parity to Preference-based
Discrimination Measures /Nips 177




'Measures envy-free discrimination

o Preferred treatment allows group-conditional boundaries

0 Yet, ensure they are envy-free
o No lowering the bar to affirmatively select certain user groups

2 Can be defined at individual or group-level

2 More formally:
P(y =1 |Xz=01 Wz=0) 2 P(y =1 |Xz=01 Wz=1)
P(y =1 |Xz=1f Wz=1) 2 P(}’) =1 |Xz=1f |/Vz=0)




‘ Learning preferred treatment classifiers

Minimize L,-o(Wy=) *+ L,=1(W,=4)

Subject to
Py =1]X20 Wp0) ZP(y = 1| Xy, Wp=y)
Py =1]Xa1, Woey) 2Py = 1| Xyoq, Woap)

0 Preferred treatment subsumes parity treatment
o Every parity treatment classifier offers preferred treatment

0 Preferred treatment constraint is weaker than parity
o Suffers lower cost of fairness




Measures bargained discrimination

Preferred impact inspired by bargaining solutions in
game-theory

Disagreement (default) solution is parity!
o Both groups try to avoid tragedy of parity

Selects pareto-optimal boundaries over group accuracies

More formally:

P()’);& y | Xz=01 VV) 2 P(}’);& y | Xz=01 Wparity)
P()’);éy | Xz=11 VV) 2 P(}’);éy | Xz=11 Wparity)



