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What is learning?

» Declarative Procedural learning
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Learning a new language’s vocabulary Learning how to ride a bike
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How do humans learn?

» Declarative Procedural learning

» Repetition is important!



How do humans learn?

» Declarative Procedural learning

» Spaced Repetition is important! [Ebbinghaus 1885]
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Leitner System for Flash cards
[Leitner 1974] 4



How do humans /learn in today’s world ?

s
» Computer assisted learning: @
duo[ingo AnKi Synap

The platforms decide when to schedule
reviews based on the user’s history and item.
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Strategy to optimize spaced repetition
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Optimizing spacing between repetition
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Memory Model: Intuition

» Memory strength decays with time

» Resets to maximum immediately after review

» Recall is probabilistic
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Memory Model: A Mathematical Model

m(t) : Probability of recall
m(t) = e~ () X7 n(t) : Memory decay rate.

n : Time since last review.
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Memory Model: SDE with jumps

m(t) : Probability of recall
m(t) = e~ () X7 n(t) : Memory decay rate.

n : Time since last review.

((1 —a)xn(t™) ifrecalled ¢

n(t) = « (14 5) xn(t™) if forgotten Y

dm(t) = —m(t)n(t)dt + (1 — m(t))dN(t)
dn(t) = [—or)n(t) + B(1 — r())n(t)]|dN (1)
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Memory Model: Inferring parameters

m(t) : Probability of recall
m(t) = e~ () X7 n(t) : Memory decay rate.

n : Time since last review.

((1 —a)xn(t™) ifrecalled ¢
\(1 + ) x n(t™) if forgotten |

dm(t) = —m(t)n(t)dt + (1 — m(t))dN(t)
dn(t) = [—or)n(t) + B(1 — r())n(t)]|dN (1)

We can estimate parameters v and 5 from data.
[Settles et al. 2016] 1



Optimizing spaced repetition: The Scheduler

Agent Environment
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Representing actions of the teacher as MTPPs

Agent Environment

o 9
ﬁ u(t)
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-— u(t) = N(t)

Learner

Online learning
platform

> We will control the rate of reviewing u(t)

» For simplicity, we will consider the problem

for just one item.
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Spaced repetition: Uniform baseline

duolingo
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platform
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Does not exploit spacing

effect at all.
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Spaced repetition: Threshold Heuristic

Agent Environment
. 9
» g u(t) 2?77
>
u(t) = N(t)
Learner
Online learning
platform
“desirable difficulty”

[Bjork, 1994]

men = m(s)
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Spaced repetition: Threshold Heuristic

Agent Environment

o » M\K\\k
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Learner

Online learning
platform

“desirable difficulty”
[Bjork, 1994]

men = m(s)
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Optimizing spacing between repetition

Agent Environment
) |e x | o o
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Learner Review & Review &
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successful recall unsuccessful recall
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Optimization Objective

Objective trades off high recall and high reviewing rate.
\ J

—

L 1 1
minimize En »)(to,¢/] [/ (5(1 —m(7))* + §qu2(7—)) dT]
to

u(to,t_f]

subject to u(t) > 0Vt € (to,t5)

defined by
dn(t) = [—or)n(t) + B(1 — r(t))n(t)|dN(t)

Dynamics dm(t) = —m(t)n(t)dt + (1 — m(t))dN (t)
Jump SDEs
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Stochastic Optimal Control: Cost-to-go

L tr 11 1
minimize E(n »)(to,¢4] [f (5(1 —m(7))% + iqqﬁ(fr)) dT]
to

u(to,tf]
subject to wu(t) > 0Vt € (to,tr)

Dynamics { dm(t) = —m(t)n(t)dt + (1 — m(t))dN ()
t)n(t

defined by
Jump SDEs dn(t) = [—ar(t)n(t) + 5(1 — r(t))n(t)]dN(t)

— min E o=
J(n(t), m(t)v t) UI(IE{J}] (N(S),T(S)”s:if

tf
[qs(m(tf),n(tf)) +/t t(m(7), u(7))dT]|.

£(m(t), n(t), w(t) = 5 (1 = m(1)* + 5 qu (1),
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Stochastic Optimal Control: Bellman principle

________________________________________________________________________________________________________

' Lemma. The optimal cost-to-go satisfies Bellman’s
- Principle of Optimality

J(n(t),m(t),t) = u(giﬁlt] E[J(n(t+ dt),m(t +dt),t + dt)] + l(n(t), m(t), u(t))

Proof same as before.
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Stochastic Optimal Control: Solution

J(m(t),n(t),t)= u(gifdt]E[J(m(t +dt), n(t+dt), t+ dt)]

+4(m(t), n(t), u(t))dt

0= u(gifdt]E[dJ(m(t), n(t), )]+ £(m(t), n(t), u(t))dt.

dJ(m,n,t) = Jy(m,n,t) — nmd,,(m,n,t) + [J(1, (1 —a)n,t)r(t) + J(1,(1 + B)n,t)(1 — )
— J(m,n,t)|dN(t).

ug(t) = ¢ [Ja(m(t),n(t),t) — Ja(1, (1 = a)n(t), )m(t) — Ja(1, (1 + B)n(t), t)(1 — m(t))],

Optimal solution (MEMORIZE):  u(t) = ¢~ 2 (1 — m(t))

21



Evaluating Memorize: Dataset

o) v o Natural experiment on Duolingo:
o 12 million sessions
o 9.3 million unique (user, word) pairs

[Settles & Meeder, 2016]
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Evaluating Memorize: Metric

o) v o Natural experiment on Duolingo:
o 12 million sessions

o 5.3 million unique (user, word) pairs

o Find (user, item) pairs closest to each scheduler
using top-quantile by likelihood.

|
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Evaluating Memorize: Metric

o) v o Natural experiment on Duolingo:
o 12 million sessions
o 9.3 million unique (user, word) pairs

o Find (user, item) pairs closest to each scheduler
using top-quantile by likelihood.

o Relative empirical forgetting rate as metric:
o  Treat first n — 1 sessions as “study”
o  Treat last attempt as the “test”, calculate forgetting rate

n = —log(m(tp))/(th — th—1),

24



Evaluating Memorize: Results

Control for:
» Number of reviews: 71
> Duration of study: 1 =1¢,,_1 — t1
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Evaluating Memorize: Results

Control for:
» Number of reviews: 71
> Duration of study: 1 =1¢,,_1 — t1

Threshold MEMORIZE Uniform
- 0.4
Q
por
Q
Q 0..
n :|I_| ok * ok ; * * ok * *
w = 0.2 T S B
p .
g 0.1
o
0.0
-l 9 3 | 5 6 7
# reviews

T =540.5 days

26
[Tabibian et. al. 2019]



Evaluating Memorize: Results

Control for:
» Number of reviews: 71
> Duration of study: 1 =1¢,,_1 — t1

Threshold MEMORIZE Uniform
- 0.4
Q
por
Q 0.3 .
n —— ~e— * k¥ "
-m = 0.2 i - e il
p .
g 0.1
o
i 0.0 : 1 (

# reviews

T =T7%0.7 days

27
[Tabibian et. al. 2019]



Evaluating Memorize: Results

Control for:
» Number of reviews: 71
> Duration of study: 1 =1¢,,_1 — t1

Correlation between LL of following Memorize and n
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Case for Reinforcement Learning

E

nvironment

o 9
» K. x | e .
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Learner \ \ .
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Online learning
successful recall unsuccessful recall
platform

The Memory Model is actually complicated:

» Massed repetition
» Dependence between items

» Multiscale Context Model 29



Case for Reinforcement Learning

Agent Environment
) |e x | e o
I\_ ] |\ 1 I
Learner Review & Review &

Online learning
platform

successful recall unsuccessful recall

When to review to[maximize recall probability?]

Improve continuous retention
< § Improve test scores X 30




Complex Memory model and rewards

Agent Environment

Learner

However, one may
have access to M | ¥ [?
test scores:

9

Te—— Exam

Key idea:
Think of the test score as rewards in a

reinforcement learning setting! d
[Upadhyay et al., 2018]



Teacher actions and Student feedback

Agent Environment
060 » ‘ ® x Q ©
| | | |
Learner
o = (Ng,m5) Pro = (Ngomy)
Pap = (Agy MMy Fi¢ ¢
T. I \ Item We do not know the
Policy distribution feedback distribution but
Intensity we can sample from it...
Parametrized using RNNs //i m V4
L L ! ‘ 11 ‘ X
[ /ZHH/‘I_' i )
Environmen R Wh, b L
[ B, Tm m mew ...ahd measure test scores
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= [Upadhyay et al., 2018]



What is the goal in reinforcement learning?

We aim to maximize the average reward in a time

window [0, T]: J(0)
A

| 1
. . ur \ . . * ; '
maximize  E . pr () Fraps () R*(T)]
I)A;()(') | ' ‘ ] T

Actions asynchronous, Reward
Feedback synchronous (Point)

Connection to optimal control:

by
J(n(t),m(t),t) = min E o [o(m(tr), n(ty)) -l—/t ((m(7),u(r))dT]|.

w(t,ty]  (N(5),m()) o=y

33
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Policy gradient

We use gradient descent to improve the policy, i.e.,
the intensity, over time:

Orr1 = 0 + alVGJ(9)|9=91

We need to compute the gradient of an average.
But the average depends on the parameters!

VoJ(0) = Vp

4:ATNPT4;9(')3‘FTNP};¢(') R (T)]

" 34

Parameters! [Upadhyay et al., 2018]



Reinforce trick to compute gradient

The reinforce trick allows us to overcome this
implicit dependence:

VoJ(0) = Vp E Ao () Frmwts, () LT (1))

Appendix A in
‘ Upadhyay et al., 2018
Vo J(0) = EATNPZ;Q(')afTNP};q;(') R*(T)VglogPe(Ar)]

\/

Parameters!
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[Upadhyay et al., 2018]



Likelihood of action events

Vo (0) = Eapnpy o). Freps () U (T) Vo log Po(Ar)]

!
P(Ap) := (eg Xg(tﬂ) exp (—/O Ap(8) ds)

The key remaining question is how to

parametrize the intensity A\, (t)
A

Parameters & functional form!
[Upadhyay et al., 2018]

Likelihood of posts by our broadcaster! T
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Policy parametrization

Parameters
Output |ayer; Last time of review
5(1) = b ")+ Vih Plyiyi = = = e L
Yo(t) = exp G+ @t — o) + W) AR ST (/A
Hidden layer: T T
h;,; = tanh(Whh@-_l + Wi + Wb, + bh)
A
Input layer: T
‘1, \" 7 €; Item
T, = Wt(tz — ti—l) -+ bt bz — Wf@z —+ bb 37
v ooV

i-th event (i-1)-th event [Upadhyay et al., 2018]



Sampling from the policy

Ay (t) = exp (b + w(t —t') + Vih;)

The intensity can increase or decrease every time
an event by the other broadcasters take place:

» We cannot apply just superposition

» We can use inversion sampling: The CDF is
a function by parts, where each part is
defined once an event by the other

broadcasters happens
Appendix Cin
[Upadhyay et al., 2018]



Results: Improved test scores

50% 1

>

25% 1

Higher is better
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It learns the
difficulty and
memory model
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Results: Intuition

1.50
1.25 A
1.00

0.75

TPPRL MEMORIZE Uniform

- / (b) Items’ difficulty

It learns the
difficulty and
memory model
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[Upadhyay et al., 2018]



