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Reinforcement learning on different settings

Actions and feedback are
real-valued functions in
continuous time
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Reinforcement learning of marked TPP

If the problem dynamics cannot be expressed

using SDEs with jumps or the objective is
intractable:

» Reinforcement learning of marked temporal
point processes

— Policy gradient [Upadhyay, 2018]

—> Policy iteration [Farajtabar et al., 2017]

Similarly as with optimal control:
Policy is characterized by an intensity function!
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Reinforcement learning of marked TPP

If the problem dynamics cannot be expressed
using SDEs with jumps or the objective is
intractable:

soral

Next, details on the approach
based on policy gradient

Policy is characterized by an intensity function!
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Viral marketing
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Visibility dynamics are unknown
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Key idea:
Think of these metrics as rewards in a

reinforcement learning setting! :

[Upadhyay et al., 2018]



Broadcasters and feedba
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[Upadhyay et al., 2018]



What is the goal in reinforcement learning?

We aim to maximize the average reward in a time
window [0, T]: J(0)
A
nr;gf;g%zv E|Af,-~,);;(,<->,'ff,-~p;;(,,<->.[1? ;T)]

Actions and Reward
environment are  (cymulative)
asynchronous!

Connection to optimal control:
J(r(t),A(t),t) = Join Bov ety [¢(r(tf))+ / Ur(r), u(r)) dr
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[Upadhyay et al., 2018]



Policy gradient

We use gradient descent to improve the policy,
i.e., the intensity, over time:

Orr1 = 0 + alVGJ(9)|9=91

We need to compute the gradient of an average.
But the average depends on the parameters!

VQJ(Q) = Vy E Aoy () Frapi o () T (T))]
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Parameters! [Upadhyay et al., 2018]



Reinforce trick to compute gradient

The reinforce trick allows us to overcome this
implicit dependence:

VoJ(0) = Vp E Ao () Frmwts, () LT (1))

Appendix A in
‘ Upadhyay et al., 2018
Vo J(0) = EATNPZ;Q(')afTNP};q;(') R*(T)VglogPe(Ar)]

\/

Parameters!
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Likelihood of action events

Vo (0) = Eapnpy o). Freps () U (T) Vo log Po(Ar)]

!
P(Ap) := (eg Xg(tﬂ) exp (—/O Ap(8) ds)

The key remaining question is how to

parametrize the intensity \,(¢)
A

Parameters & functional form!
[Upadhyay et al., 2018]

Likelihood of posts by our broadcaster! T
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Policy parametrization

e the Parameters
OUtPUt Iayer: broL::::::ster p:sted
v
A (t) = exp (by +we(t — t') + Vih;)
Hidden layer: T
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i-th event (i-1)-th event [Upadhyay et al., 2018]



Sampling from the policy

Ay (t) = exp (b + w(t —t') + Vih;)

The intensity can increase or decrease every time
an event by the other broadcasters take place:

—> We cannot apply just superposition

—> We can use inversion sampling: The CDF is
a function by parts, where each part is
defined once an event by the other

broadcasters happens Appendix Cin
Upadhyay et al., 2018

[Upadhyay et al., 2018]



Average Rank
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Time at the top
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