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What is optimal control used for?

Optimal control aims to find an optimal action
to solve a task in an environment

—> https://www.youtube.com/watch?v=Lphi7EeU37s Cart pole balancing
— https://www.youtube.com/watch?v=vjSohj-iclc Boston dynamics |

—> https://www.youtube.com/watch?v=fUyU3IKzoio Boston dynamics i

One needs to accurately model how the
environment reacts to the actions via:

* (Stochastic) differential equations
* (Stochastic) difference equations



Optimal control on different problem settings

Actions and feedback are
real-valued functions in
continuous time
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localized in continuous time



Example I: Viral marketing

Agent Environment
"@/ - |
Vi , "

Social media user

Y
Followers’ Feed

Forbes
For Brands And PR: When Is The Best Time To Post On THE HUFFINGTON POST

Social Media?
The Best Times to Post on Social Media

‘When to post to maximize views or likes?
| |
wi(t) = u(t) = Ni(t) Marks (feedback) given
Z ] ] ‘ by environment
Design (optimal)
posting intensity




Example Il: Spaced repetition

Agent Environment
* ¥ ¢ ’
Learner R§vi ow & Review &

Online learning
platform

successful recall unsuccessful recall

‘When to review to maximizelrecall probability'?
| /
Ai(t) = N;(t) Marks
Design (optimal)
reviewing intensities




Example Ill: Suppressing epidemics

Agent Environment
+ J; e
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Health policy /
(Resource allocation) <

Population (social network)

Who to treat and when to reduce infections?
Y Y
)\Z(t> —_— N@(t) Marks
Design (optimal)
treatment intensities 6




Stochastic optimal control of SDEs with jumps

If the problem dynamics can be expressed
using SDEs with jumps:

Optimal control of marked temporal
point processes

—> HIJB equation [zarezade et al., 2017, 2018; Tabibian et al., 2017; Kim et al. 2018;
Wang et al., 2018]

—> Variational inference [wangetal., 2017]

Key idea:
Policy is characterized by an intensity
function!



Stochastic optimal control of SDEs with jumps

If the problem dynamics can be expressed
using SDEs with jumps:

» Optima
PO Next, details on one

approach to the when to
post problem

| control of marked temporal

m et al. 2018;

Policy is characterized by an intensity
function!



Strategy to solve the when-to-post problem

Data N Visibility and feed Optimizing 2 Experiments
representation dynamics visibility
Temporal point System of stochastic  Optimal control of Twitter

processes equations with jumps jumps



Representation of broadcasters and feeds

Broadcasters’ posts as Users’ feeds as sum of
a counting process N(t) counting processes M(t)
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Broadcasters and feeds

t
tydt By E[dM ()| H(t)]= ~(t) dt
!
. Broadcaster AT p(t)
Policy — | intensity function Feed intensity function

(tweets / hour)

(tweets / hour)

= ATN(t) — A;N;(t)
= v, (t) — pi(t)
Feed due to other

broadcasters
[Zarezade et al., 2017 & 2018]

Given a broadcaster i and »
her followers %
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Definition of visibility function

Visibility of broadcaster i at follower j

Position of the highest ranked tweet by
broadcaster i in follower j’s wall

M(t)
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[ Post by other broadcasters

[Zarezade et al., 2017 & 2018]



Definition of visibility function

Visibility of broadcaster i at follower j

Position of the highest ranked tweet by
broadcaster i in follower j’s wall

M(t)

r;(t”)=0
In general, the visibility |
N
- depe.nds on the feed —_—
ankine g ranking mechanism! ==
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[ Post by other broadcasters

[Zarezade et al., 2017 & 2018]



Visibility dynamics in a FIFO feed (l)

New tweets

Reverse
chronological order

Y

rij(t+dt) = (ri;(t) +1)dM;(6)(1 —dNs(t)4+ 0 4+ 745(¢)(1 — dM;\(t))(1 — dN;(t))

M(t)

Older tweets

- >

\_'_' L Y A |
Rank at t+dt Other broadcasters Broadcaster i Nobody posts
post a story and posts a story and a story
broadcaster i does other broadcasters
not post do not post l

14

Follower’s wall

[Zatezade et al., 2017 & 2018]



Visibility dynamics in a FIFO feed (ll)

rij(t+dt) = (ri(t) +1)dMj (1) (1 —dNi(t)+ 0 + 7r45(t)(1 —dM;;(t))(1 — dN;i(t))

‘ Zero-one law dNj;(t)dM;;(t) = 0

—

drij(t) = —ri;(t) dNi(t) + dM;\(2) Stochastic
/ - N\ _ differential equation
r; -(t 4+ dt) —r (t) Broadcasteri Other broadcasters . .
/ J posts a story posts a story (SDE) with jumps
' OUR GOAL:

Optimize r;(t) over time, so that it is small, by controlling
- dN,(t) through the intensity p(t) '

__________________________________________________________________________________________________________

[Zarezade et al., 2017 & 2018]



Feed dynamics

We consider a A (t) = +@/ g(t — )dN(s)
general intensity: 0 ,
(e.g. Hawkes, Determmlstlc Stochastlc

arbitrary intensity self-excitation

L 4

o(t) +wAo(t) — wA*(t)] dt + ad Ny (t)

[Zarezade et al., 2017 & 2018]

inhomogeneous Poisson)

Jump stochastic _[ AN (1
differential equation (SDE)



Feed dynamics

Surprisingly, we will not have
to estimate the intensity to

We con optimize visibility!
general
(e.g. Hawkes, Deterministic Stochastic

arbitrary intensity self-excitation

\ 4

)+ wo(t) — wA™ ()] dt + ad N;(¢)

[Zarezade et al., 2017 & 2018]

inhomogeneous Poisson)

Jump stochastic _[ AN (
differential equation (SDE)



The when-to-post problem

Terminal penalty

v

. . . tf
minitaize Eov,aa, 00,1 (0000 + [ A ur)dr]
— u(t0,t ] to |\ ' J
subject to wu(t) >0 Vt € (to,ty], A
Nondecreasing loss
on the visibility and the 18

broadcaster’s intensity




The when-to-post problem

Terminal penalty Nondecreasing loss

v V

ti \
Optimization | minimize En, pr,)to.ty] [¢(T(tf))+/ E(T(T),u(f))dT]

problem ulto:ts] 0
subject to wu(t) >0 Vt € (to,ty],

Dynamics

Jump SDEs dA(t) = [Ao(t) +wAo(t) — wA(t)] dt + adMfdde et al., 2017 & 2018]



When-to-post for a single follower

u(t()?tf]
problem

ty
Optimization minimize &y a7 (to,t;] [¢(T(tf)) +/ U(r(7),u(T))dr
to
subject to u(t) >0 Vt € (to,ty],

defined by AN(t) = [N, (t) + wAo(t) — wA(t)] dt + adM(t)

Dynamics dr(t) = —r(t) dN(t) + dM(t)
Jump SDEs

To solve the optimization problem, we first define the
optimal cost-to-go:

B0, 1) = min Eoyane {qs(r(tf)) + [ tter) utr) ar

u(t,tf]



Bellman’s Principle of Optimality

' Lemma. The optimal cost-to-go satisfies Bellman’s
- Principle of Optimality

Jr()AE).8) = min EJ(r(t + di), A+ db). £ + dt)] + £r(t), ult)) dt

u(ttbdg T T T
Proof sketch
T 0,r(6),0) = min Eoanen (e + [ ), utn)ar]
— min Evane, [gb(r(t N+ /t T (), u(r)) dr + | /t :t 6r(7), u(r)) dT]

Ly
= min Ey a7 ¢,t4d1 [E(N,M)(t+dt,tf] {¢(”‘ (ty)) +€(t,myu) dt + /
u(t,ty] t+dt

£(r(7), u(r)) d'r]]

tf
= i, E(n, M)t t+dt] [5(7‘ (t),Y(t),t) dt + E(n, a1y e+t t] [¢(T(tf ) + /; o

6(r(r), u(r)) dr]]

[Zarezade et al., 2017 & 2018]



The Hamilton-Jacobi-Bellman (HJB) equation (l)

Bellman’s Principle of Optimality
J(r(t),A(t),t) = min E[J(r(t+dt), \(t +dt),t +dt)] + £(r(t),u(t)) dt

u(t,t+dt]
‘ J(r(t + dt), At +dt), T+ dt)=J (r(t), At),t) + dJ (r(t), A1) )

0= min E[dJ(r(t), A(t),t)] + £(r(t),u(t))dt
u(t,t+dt]

—r(t)dN(t) + dM(t)
[AG(8) + wAo(t) — wA(t)] dt + adM (t)

S

>
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Hamilton-Jacobi-Bellman (HJB) } Partial differential

. equationinJ
equation
9 (with respect tor, A and t)’

[Zarezade et al., 2017 & 2018]



The Hamilton-Jacobi-Bellman (HJB) equation

0= min E[dJ(r(t),A(t),t)] + £(r(t),u(t))dt

w(t,t+dt]
. r(t) = —r(t) AN (t) + dM(t)
A(t) o(t) + who(t) — wA(t)] dt + adM (t)

In(r(£), A(t), 8) + [J(r(t) + 1, A(2) + a, 1) — J(r(t), \(2), )]A(E)

0 = Ji(r(t), A(£), £) + [Ao(2) + wAo(t) — wA(?)]
t £), A(t), )]u(t).

)
+ o, £(r(t), u(t)) + [J(0, A(t), 2) — J(r(

u*(t) = g7 [J(r(t), A(t),t) — J(0,A(2), 1)]

\

0= Ji(r(t), A(®), t) + Ao (t) + who(t) — wA@)] Ja(r(t), A(t), 1) + [J(r(t) + 1, A(t) + a, t) — T (r(2), A(2), £)IA(2)
+ %s(t) r?(t) — %q‘l [T(r(t), A(®),2) = J(0,A(£), D))"
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[Zarezade et al., 2017 & 2018]



Solving the HJB equation

Consider a quadratic loss

1 1
2 2
Ur(t),u(t)) = 5s(t) r°(¢) + 5qu(t)
2 2
A A
Favors some periods of times Trade-offs visibility and number
(e.g., times in which the follower is of broadcasted posts
online)

Then, it can be shown that the optimal cost-to-go is
given by:

T

J(r(t),A(t),t) = f(t) + V/s(t)/qr(t +Zgg )N (¢t

24

[Zarezade et al., 2017 & 2018]



Solving the HJB equation

Given the cost
J(r(t), A(£),t) = F(t) + /s(t)/qr(t +Zgg £)N (¢

Then, we can readily compute the optimal intensity:

25

[Zarezade et al., 2017 & 2018]



The RedQueen algorithm

Considers(t)=s —s u*(t) = (s/q)V2 r(t)

How do we sample the next time?

r(t) a
nc\pe
cixion PF
L —
[ ]
>
tl t2 t3 t4 t
L 2N 2 S S
A ~ exp( (s/q)Y/?) t1+4, th+4; t3+4; t,+44  miniti+ A
It only requires sampling M(t;) times!
26

[Zarezade et al., 2017 & 2018]



Experiments on real data

Consider 2,000 broadcasters (users) from Twitter

For each broadcaster:

§ :
Collect the other
-ﬁ@? broadcasters’ posted
tweets during 2 months
Collect all
his posted tweets ,, N\‘\\\'\O“S‘
during 2 months - £ “Sefs-
Track down o

his followers
27



Experimental setup on real data

Experimental setup allows for a truthful what-if
evaluation:

Playback other _ .
brc\:adcasters’ Tweet according to optimal
tweets on a held- intensity and compute visibility
out set over time
T T Needed for
i Fit other . | state-of-the-art
| broadcasters’ ~ Find i Karimi’s method
| intensities )\'“&?“S't)\v(t) i
i f}/v\u(t) “ - i
o mmmmmmmmmmmmmmmmmmmmmmmm e : 2




Evaluation metrics

Time at the top

T T
| r(t)dt [ I(r(t)<1)dt
O 0
I Post by broadcaster [ Post by other broadcasters

= rlt)=0 r(ty) =1 r(ts) =0 r(ty) =1 r(ts) = 2 r(ts) =0
> = ] - ] — -
~ N N N N N E
“;’ N N N N N N
o N N N N N N
= I E E E I N
Ll . . .

Ox(t, —ty) + Ix(ts—t;) +Ox(ty — t5) + Ix(ts — ty) + 2x(tg — ts)

Time at the top = (t-t;) + O + (t,-t3) + O + 0
29



Position over time

broadcasters’ - 1 O
true posts .
average across

Y =,

0.91

Better

0.0 . :
REDQUEEN Karimi

It achieves (i) 0.28x lower average position, in average,
than the broadcasters’ true posts and (ii) lower average

position for 100% of the users. N



Time at the top

daverage across

/ users \
A 3 4
3
)
broadcasters’ - 1 ]
irue posts REDQUEEN Karimi

It achieves (i) 3.5x higher time at the top, in average, than
the broadcasters’ true posts and (ii) higher time at the top

for 99.1% of the users. N



Example: a broadcaster in Twitter

Significance:
followers’ retweets
per weekday

400
300
200

100
Average position

Broadcaster’s over time "M T W Th F Sa Su
posts \
3000 N(¢) 3000
r(t)
1500 1500
0 0
01/06 15/06 31/06 01/06 15/06 31/06
True pOStS 40% lower! REDQUEEN

LTt =698.04  4mmp % [, F(t)dt = 42525 »

[Zarezade et al., 2017 & 2018]



Why RedQueen?

“Now, here, you see, it takes all the running you
can do, to keep in the same place”

Through the Looking-Glass, Lewis Carroll

more at
learning.mpi-sws.org
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