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Temporal Point Processes:
Basic building blocks



Poisson process

time

Intensity of a Poisson process

()= W
Observations:

1. Intensity independent of history
2. Uniformly random occurrence
3. Time interval follows exponential distribution



Fitting a Poisson from (historical) timeline
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Sampling from a Poisson process

We would like to sample: ¢t ~ pexp(—pu(t —ts3))

We sample using inversion sampling: Uni form(0,1)
|
F()=1—exp(-p(t—t2)) 8y t ~— — log(l —u)
F(w)
P(F ()< t) = Plus E(t)) = F(t)



Inhomogeneous Poisson process
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Intensity of an inhomogeneous Poisson process

A7(t) =g(t) 20

Observations:

1. Intensity independent of history
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Nonparametric inhomogeneous Poisson process




Sampling from an inhomogeneous Poisson

t1  to t3 t="1T

Thinning procedure (similar to rejection sampling):

1. Sample ¢ from Poisson process with intensity ¢,

Uniform(0,1)
‘1, Inversion

b~ — 1 log(1 — w) + t3 sampling
)
2. Generate wuy ~ Uniform(0,1) }

Keep sample with

3. Keep the sample if uy < g(?) /u prob. g(t)/



Terminating (or survival) process
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Intensity of a terminating (or survival) process
AT(t) =g"(t)(1-N(t)) 20

Observations:

1. Limited number of occurrences
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Self-exciting (or Hawkes) process
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Triggering kernel

Intensity of self-exciting

(or Hawkes) process: A (t) = U+« Ztie?{(t) Rw (t — tz’)
= i+ aky(t) x dN (1)

Observations:

1. Clustered (or bursty) occurrence of events

2. Intensity is stochastic and history dependent
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Fitting a Hawkes process from a recorded timeline
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Sampling from a Hawkes process

t1 tots t="1T

Thinning procedure (similar to rejection sampling):

1. Sample ¢ from Poisson process with intensity /£,

Uniform(0,1)
‘l' Inversion

b~ — 1 log(1 — U) + t4 sampling
H3
2. Generate wuy ~ Uniform(0,1) }

Keep sample with

3. Keep the sample if uy < g(t)/u3 prob. g(t)/ 1,
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Summary

Building blocks to represent different dynamic processes:

Poisson processes:
A () = A

g |
Inhomogeneous Poisson processes:
A (t) = g(1)

Terminating point processes:

(1) = g"(1)(1 - N(1)) /\T L
! Lia

7 7 .

Self-exciting point processes:

N(t)=p+a Y rut—t)

tiEH(t) ] 14



Summary

Building blocks to represent different dynamic processes:

Poisson processes: | ® |
A () = A ' | =

We know how to fit them
and how to sample from them
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Temporal Point Processes:
Superposition
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Superposition of processes
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Sample each intensity + take minimum = Additive intensity

t = min (47',7'1,7'2,7'3) ‘ )\ (t) — /L —|— @ ZtiE'H(t) Ky (t T tz)



Mutually exciting process
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Clustered occurrence affected by neighbors
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Mutually exciting terminating process
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Clustered occurrence affected by neighbors

(1) = (1= N@E) (9O +BY, _,, , Felt—1))
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