
Guardians and Actions" Linguistic
for Robust, Distributed Programs

BARBARA LISKOV and ROBERT SCHEIFLER
Massachusetts Institute of Technology

Support

An overview is presented of an integrated programming language and system designed to support the
construction and maintenance of distributed programs: programs in which modules reside and execute
at communicating, but geographically distinct, nodes. The language is intended to support a class of
applications concerned with the manipulation and preservation of long-lived, on-line, distributed data.
The language addresses the writing of robust programs that survive hardware failures without loss of
distributed information and that provide highly concurrent access to that information while preserving
its consistency. Several new linguistic constructs are provided; among them are atomic actions, and
modules called guardians that survive node failures.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed
Systems--distributed applications; distributed databases; D.1.3 [Programming Techniques]:
Concurrent Programming; D.3.3 [Programming Languages]: Language Constructs--abstract data
types; concurrent programming structures; modules, packages; D.4.5 [Operating Systems]: Reli-
ability-checkpoint/restart; fault-tolerance; H.2.4 [Database Management]: Systems--distrib-
uted systems; transaction processing

General Terms: Languages, Reliability

Additional Key Words and Phrases: Atomicity, nested atomic actions, remote procedure call

1. INTRODUCTION

T e c h n o l o g i c a l a d v a n c e s h a v e m a d e i t cos t e f fec t ive to c o n s t r u c t la rge s y s t e m s

f r o m co l lec t ions of c o m p u t e r s c o n n e c t e d v ia ne tworks . T o s u p p o r t such sys tems ,

t h e r e is a g rowing n e e d for e f fec t ive ways to o rgan ize and m a i n t a i n d i s t r i b u t e d
p r o g r a m s : p r o g r a m s in w h i c h m o d u l e s res ide and e x e c u t e a t c o m m u n i c a t i n g , b u t

geograph ica l ly dis t inct , locat ions . In th is p a p e r we p r e s e n t an o v e r v i e w of an

i n t e g r a t e d p r o g r a m m i n g l anguage a n d sys tem, ca l led A R G U S , t h a t was de s igned

for th is purpose .

A preliminary version of this paper appeared in the Conference Record of the Ninth Annual
Symposium on Principles of Programming Languages, January 1982 [18].
This research was supported in part by the Advanced Research Projects Agency of the Department
of Defense, monitored by the Office of Naval Research under contract N00014-75-C-0661, and in part
by the National Science Foundation under grant MCS 79-23769.
Authors' address: Laboratory for Computer Science, Massachusetts Institute of Technology, 545
Technology Square, Cambridge, MA 02139.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1983 ACM 0164-0925/83/0700-0381 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983, Pages 381-404.

382 B. Liskov and R. Scheifler

Distributed programs run on nodes connected (only) via a communications
network. A node consists of one or more processors, one or more levels of memory,
and any number of external devices. Different nodes may contain different kinds
of processors and devices. The network may be long haul or short haul, or any
combination, connected by gateways. Neither the network nor any nodes need be
reliable. However, we do assume that all failures can be detected as explained in
[15]. We also assume that message delay is long relative to the time needed to
access local memory and therefore that access to nonlocal data is significantly
more expensive than access to local data.

The applications that can make effective use of a distributed organization differ
in their requirements. We have concentrated on a class of applications concerned
with the manipulation and preservation of long-lived, on-line data. Examples of
such applications are banking systems, airline reservation systems, office auto-
mation systems, database systems, and various components of operating systems.
In these systems, real-time constraints are not severe, but reliable, available,
distributed data is of primary importance. The systems may serve a geographi-
cally distributed organization. Our language is intended to support the implemen-
tation of such systems.

The application domain, together with our hardware assumptions, imposes a
number of requirements:

Service. A major concern is to provide continuous service of the system as a
whole in the face of node and network failures. Failures should be localized so
that a program can perform its task as long as the particular nodes it needs to
communicate with are functioning and reachable. Adherence to this principle
permits an application program to use replication of data and processing to
increase availability.

Reconfiguration. An important reason for wanting a distributed implementa-
tion is to make it easy to add and reconfigure hardware to increase processing
power, decrease response time, or increase the availability of data. It also must be
possible to implement logical systems that can be reconfigured. To maintain
continuous service, it must be possible to make both logical and physical changes
dynamically, while the system continues to operate.

Autonomy. We assume that nodes are owned by individuals or organizations
that want to control how the node is used. For example, the owner may want to
control what runs at the node, or to control the availability of services provided
at the node. Further, a node might contain data that must remain resident at
that node; for example, a multinational organization must abide by laws governing
information flow among countries. The important point here is that the need for
distribution arises not only from efficiency considerations, but from political and
sociological considerations as well.

Distribution. The distribution of data and processing can have a major impact
on overall efficiency, in terms of both responsiveness and cost-effective use of
hardware. Distribution also affects availability. To create efficient, available
systems while retaining autonomy, the programmer needs explicit control over
the placement of modules in the system. However, to support a reasonable degree
of modularity, changes in the location of modules should have limited, localized
effects on the actual code.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

Guardians and Actions 383

Concurrency. Another major reason for choosing a distributed implementation
is to take advantage of the potential concurrency in an application, thereby
increasing efficiency and decreasing response time.

Consistency. In almost any system where on-line data is being read and
modified by ongoing activities, there are consistency constraints that must be
maintained. Such constraints apply not only to individual pieces of data, but to
distributed sets of data as well. For example, when funds are transferred from
one account to another in a banking system, the net gain over the two accounts
must be zero. Also, data that is replicated to increase availability must be kept
consistent.

Of the above requirements, we found consistency the most difficult to meet.
The main issues here are the coordination of concurrent activities {permitting
concurrency but avoiding interference) and the masking of hardware failures.
Thus, to support consistency we had to devise methods for building a reliable
system on unreliable hardware. Reliability is an area that has been almost
completely ignored in programming languages (with the exception of [22, 25, 28]).
Yet our study of applications convinced us that consistency is a crucial require-
ment: an adequate language must provide a modular, reasonably automatic
method for achieving consistency.

Our approach is to provide atomicity as a fundamental concept in the language.
The concept of atomicity is not original with our work, having been used
extensively in database applications [4-6, 8-10]. However, we believe the integra-
tion into a programming language of a general mechanism for achieving atomicity
is novel.

The remainder of the paper is organized as follows. Atomicity is discussed in
the next section. Section 3 presents an overview of ARGUS. The main features
are guardians, the logical unit of distribution in our system, and atomic actions.
Section 4 illustrates many features of the language with a simple mail system.
The final section discusses what has been accomplished.

2. ATOMICITY

Data consistency requires, first of all, that the data in question be resilient to
hardware failures, so that a crash of a node or storage device does not cause the
loss of vital information. Resiliency is accomplished by means of redundancy. We
believe the most practical technique using current technology is to keep data on
stable storage devices [15]. 1 Of course, stable storage, in common with any other
technique for providing resiliency, cannot guarantee that data survive all failures,
but it can guarantee survival with extremely high probability.

Data resiliency only ensures data survival in a quiescent environment. Our
solution to the problem of maintaining consistent distributed data in the face of
concurrent, potentially interfering activities, and in the face of system failures
such as node crashes and network disruptions while these activities are running,
is to make activities atomic.

The state of a distributed system is a collection of data objects that reside at
various locations in the network. An activity can be thought of as a process that

1We need merely assume that stable storage is accessible to every node in the system; it is not
necessary that every node have its own local stable storage devices.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

384 B. Liskov and R. Scheifler

attempts to examine and transform some objects in the distributed state from
their current {initial) states to new (final) states, with any number of intermediate
state changes. Two properties distinguish an activity as being atomic: indivisibility
and recoverability. By indivisibility we mean that the execution of one activity
never appears to overlap (or contain) the execution of any other activity. If the
objects being modified by one activity are observed over time by another activity,
the latter activity will either always observe the initial states or always observe
the final states. By recoverability we mean that the overall effect of the activity
is all-or-nothing: either all of the objects remain in their initial state, or all change
to their final state. If a failure occurs while an activity is running, it must be
possible either to complete the activity or to restore all objects to their initial
states.

2.1 Act ions

We call an atomic activity an action. An action may complete either by commit-
ting or by aborting. When an action aborts, the effect is as if the action had
never begun: all modified objects are restored to their previous states. When an
action commits, all modified objects take on their new states.

One simple way to implement the indivisibility property is to force actions to
run sequentially. However, one of our goals is to provide a high degree of
concurrency. The usual method of providing indivisibility in the presence of
concurrency, and the one we have adopted, is to guarantee serializability [6];
namely, actions are scheduled in such a way that their overall effect is as if they
had been run sequentially in some order. To prevent one action from observing
or interfering with the intermediate states of another action, we need to synchro-
nize access to shared objects. In addition, to implement the recoverability prop-
erty, we need to be able to undo the changes made to objects by aborted actions.

Since synchronization and recovery are likely to be somewhat expensive to
implement, we do not provide these properties for all objects. For example,
objects that are purely local to a single action do not require these properties.
The objects that do provide these properties are called atomic objects, and we
restrict our notion of atomicity to cover only access to atomic objects. That is,
atomicity is guaranteed only when the objects shared by actions are atomic
objects.

Atomic objects are encapsulated within atomic abstract data types. An abstract
data type consists of a set of objects and a set of primitive operations; the
primitive operations are the only means of accessing and manipulating the objects
[21]. Atomic types have operations just like normal data types, except that the
operations provide indivisibility and recoverability for the calling actions. Some
atomic types are built in, while others are user defined. ARGUS provides, as
built-in types, atomic arrays, records, and variants, with operations nearly iden-
tical to those on the normal arrays, records, and variants provided in CLU [20].
In addition, objects of built-in scalar types, such as characters and integers, are
atomic, as are structured objects of built-in immutable types, such as strings,
whose components cannot change over time.

Our implementation of (mutable) built-in atomic objects is based on a fairly
simple locking model. There are two kinds of locks: read locks and write locks.
Before an action uses an object, it must acquire a lock in the appropriate mode.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

Guardians and Actions • 385

The usual locking rules apply: multiple readers are allowed, but readers exclude
writers, and a writer excludes readers and other writers. When a write lock is
obtained, a version of the object is made, and the action operates on this version.
If, ultimately, the action commits, this version will be retained, and the old
version discarded. If the action aborts, this version will be discarded, and the old
version retained. For example, atomic records have the usual component selection
and update operations, but selection operations obtain a read lock on the record
(not the component), and update operations obtain a write lock and create a
version of the record the first time the action modifies the record.

All locks acquired by an action are held until the completion of that action, a
simplification of standard two-phase locking [9]. This rule avoids the problem of
cascading aborts: if a lock on an object could be released early, and the action
later aborted, any action that had observed the new state of that object would
also have to be aborted.

Within the framework of actions, there is a straightforward way to deal with
hardware failures at a node: they simply force the node to crash, which in turn
forces actions to abort. As was mentioned above, we make data resilient by
storing it on stable storage devices. Furthermore, we do not actually copy
information to stable storage until actions commit. Therefore, versions made for
a running action and information about locks can be kept in volatile memory.
This volatile information will be lost if the node crashes. If this happens, the
action must be forced to abort. To ensure that the action will abort, a standard
two-phase commit protocol [8] is used. In the first phase, an attempt is made to
verify that all locks are still held, and to record the new state of each modified
object on stable storage. If the first phase is successful, then in the second phase
the locks are released, the recorded states become the current states, and the
previous states are forgotten. If the first phase fails, the recorded states are
forgotten and the action is forced to abort, restoring the objects to their previous
states.

Turning hardware failures into aborts has the merit of freeing the programmer
from low-level hardware considerations. It also reduces the probability that
actions will commit. However, this is a problem only when the time to complete
an action approaches the mean time between failures of the nodes. We believe
that most actions will be quite short compared to realistic mean time between
failures for hardware available today.

It has been argued that indivisibility is too strong a property for certain
applications because it limits the amount of potential concurrency [14]. We
believe that indivisibility is the desired property for most applications, if it is
required only at the appropriate levels of abstraction. ARGUS provides a mech-
anism for user-defined atomic data types. These types present an external
interface that supports indivisibility but that can offer a great deal of concurrency
as well. We do not present our mechanism here; user-defined atomic types are
discussed in [30].

2.2 Nes ted A c t i o n s

So far we have presented actions as monolithic entities. In fact, it is useful to
break down such entities into pieces; to this end we provide hierarchically
structured, nested actions. Nested actions, or subactions, are a mechanism for

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

386 • B. L iskov and R. Scheif ler

coping with failures, as well as for introducing concurrency within an action. An
action may contain any number of subactions, some of which may be performed
sequentially, some concurrently. This structure cannot be observed from outside;
that is, the overall action still satisfies the atomicity properties. Subactions appear
as atomic activities with respect to other subactions of the same parent. Subac-
tions can commit and abort independently, and a subaction can abort without
forcing its parent action to abort. However, the commit of a subaction is
conditional: even if a subaction commits, aborting its parent action will abort it.
Further, object versions are written to stable storage only when top-level actions
commit.

Nested actions aid in composing (and decomposing) activities in a modular
fashion. This allows a collection of existing actions to be combined into a single,
higher level action, and to be run concurrently within that action with no need
for additional synchronization. For example, consider a database replicated at
multiple nodes. If only a majority of the nodes need to be read or written for the
overall action to succeed, this is accomplished by performing the reads or writes
as concurrent subactions, and committing the overall action as soon as a majority
of the subactions commit, even though some of the other subactions are forced to
abort.

Nested actions have been proposed by others [4, 10, 26]; our model is similar
to that presented in [23]. To keep the locking rules simple, we do not allow a
parent action to run concurrently with its children. The rule for read locks is
extended so that an action may obtain a read lock on an object provided every
action holding a write lock on that object is an ancestor. An action may obtain a
write lock on an object provided every action holding a (read or write) lock on
that object is an ancestor. When a subaction commits, its locks are inherited by
its parent; when a subaction aborts, its locks are discarded.

Note that the locking rules permit multiple writers, which implies that multiple
versions of objects are needed. However, since writers must form a linear chain
when ordered by ancestry, and actions cannot execute concurrently with their
subactions, only one writer can ever actually be executing at one time. Hence, it
suffices to use a stack of versions (rather than a tree) for each atomic object. On
commit, the top version becomes the new version for the parent; on abort, the
top version is simply discarded. Since versions become permanent only when top-
level actions commit, the two-phase commit protocol is used only for top-level
actions. A detailed description of locking and version management in a system
supporting nested actions is presented in [23].

In addition to nesting subactions inside other actions, it is sometimes useful to
start a new top action inside another action. Such a "nested" top action, unlike
a subaction, has no special privileges relative to its parent; for example, it is not
able to read an atomic object modified by its parent. Furthermore, the commit of
a nested top action is not relative to its parent; its versions are written to stable
storage, and its locks are released, just as for normal top actions. Nested top
actions are useful for benevolent side effects. For example, in a naming system a
name lookup may cause information to be copied from one location to another,
to speed up subsequent lookups of that name. Copying the data within a nested
top action ensures that the changes remain in effect even if the parent action
aborts.
ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

Guardians and Actions 387

2.3 Remote Procedure Call

Perhaps the single mos t impor t an t appl icat ion of nested act ions is in masking
communica t ion failures. Logical nodes (described in Sect ion 3) in A R G U S com-
munica te via messages. We believe t ha t the mos t desirable fo rm of communca t ion
is the paired send and reply: for every message sent, a reply message is expected.
In fact, we believe the fo rm of communica t ion t ha t is needed is remote procedure
call, with at-most-once semantics, namely, tha t (effectively) e i ther the message
is delivered and acted on exactly once, with exact ly one reply received, or the
message is never delivered and the sender is so informed.

The rat ionale for the high-level, a t -most -once semant ics of r emote procedure
call is presented in [16] (see also [29]). Briefly, we believe the sys tem should m a s k
f rom the user low-level issues, such as packet izat ion and retransmission, and t ha t
the sys tem should make a reasonable a t t e m p t to deliver messages. However , we
believe the possibili ty of long delays and of u l t imate failure in sending a message
cannot and should not be masked. In such a case, the communica t ion would fail. 2
T h e sender can then cope with the failure according to the demands of the
par t icular application. However , coping with the failure is m u c h s impler if it is
guaranteed tha t in this case the r emote procedure call had no effect.

T h e all-or-nothing na ture of r emote procedure call is s imilar to the recovera-
bility p roper ty of actions, and the abil i ty to cope with communica t ion failures is
similar to the abil i ty of an action to cope with the failures of subactions. Therefore ,
it seems natura l to implement a r emote procedure call as a subaction: commu-
nication failures will force the subact ion to abort , and the caller has the abil i ty to
abor t the subact ion on demand. However , as ment ioned above, abor t ing the
subact ion does not force the pa ren t act ion to abort . T h e caller is free to find some
other means of accomplishing its task, such as communica t ing with some o ther
node.

2.4 Remarks

In our model, there are two kinds of actions: subact ions and top-level actions. We
believe these correspond in a na tura l way to activit ies in the appl icat ion system.
Top-level actions correspond to activities tha t in terac t with the external environ-
ment , or, in the case of nested top actions, to activit ies tha t should not be undone
if the paren t aborts . For example, in an airline reservat ion system, a top-level
action might correspond to an interact ion with a clerk who is enter ing a re la ted
sequence of reservations. Subactions, on the o ther hand, correspond to in ternal
activities tha t are in tended to be carried out as pa r t of an external interaction; a
reservat ion on a single flight is an example.

No t all effects of an act ion can be undone by abor t ing tha t action, since a
change to the external environment , for example, pr int ing a check, cannot be
undone by p rogram control alone. But as long as all effects can be undone, the
user of our language does not need to write any code to undo or compensa te for
the effects of abor ted actions.

2 For example, the system would cause the communication to fail if it is unable to contact the remote
node. We believe the system, and not the programmer, should take on this kind of responsibility,
because the programmer would find it very difficult to define reasonable timeouts.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

388 • B. Liskov and R. Scheifler

Before doing something like printing a check, the application program should
make sure that printing the check is the right thing to do. One technique for
ensuring this is to break an activity into two separate, sequential top-level actions.
All changes to the external environment are deferred to the second action, to be
executed only if the first action is successful. Such a technique will greatly
decrease the likelihood of actions having undesired effects that cannot be undone.

The commit of a top-level action is irrevocable. If that action is later found to
be in error, actions that compensate for the effects of the erroneous action (and
of all later actions that read its results) must be defined and executed by the user.
Compensation must also be performed for effects of aborted actions that cannot
be undone. Note that, in general, there is no way that such compensation could
be done automatically by the system, since extrasystem activity is needed (e.g.,
cancelling already issued checks).

Given our use of a locking scheme to implement atomic objects, it is possible
for two (or more) actions to deadlock, each attempting to acquire a lock held by
the other. Although in many cases deadlock can be avoided with careful program-
ming, certain deadlock situations are unavoidable. Rather than having the system
prevent, or detect and break, deadlocks, we rely on the user to time out and abort
top-level actions. These timeouts generally will be very long, or will be controlled
by someone sitting at a terminal. Note that such timeouts are needed even
without deadlocks, since there are other reasons why a top action may be too
slow {e.g., contention).

A user can retry a top action that aborted because of a timeout or crash, but
ARGUS provides no guarantee that progress will be made. ARGUS will be
extended if needed {e.g., by raising the priority of a top action each time it is
repeated [27] or by using checkpoints [10]).

3. LINGUISTIC CONSTRUCTS

In this section we describe the main features of ARGUS. The most novel features
are the constructs for implementing guardians, the logical nodes of the system,
and for implementing actions, as described in the previous section. To avoid
rethinking issues that arise in sequential languages, we have based ARGUS on an
existing sequential language. CLU [17, 20] was chosen because it supports the
construction of well-structured programs through abstraction mechanisms and
because it is an object-oriented language, in which programs are naturally thought
of as operating on potentially long-lived objects.

3.1 Overview

In ARGUS, a distributed program is composed of a group of guardians. A
guardian encapsulates and controls access to one or more resources, for example,
databases or devices. A guardian makes these resources available to its users by
providing a set of operations called handlers, which can be called by other
guardians to make use of the resources. The guardian executes the handlers,
synchronizing them and performing access control as needed.

Internally, a guardian contains data objects and processes. The processes
execute handlers (a separate process is spawned for each call) and perform
background tasks. Some of the data objects, for example, the actual resources,
make up the state of the guardian; these objects are shared by the processes.
Other objects are local to the individual processes.
ACM Transact ions on Programming Languages and Systems, Vol. 5, No. 3, Ju ly 1983.

Guardians and Actions • 389

A guardian runs at a single node but can survive crashes of this node (with
high probability). Thus, the guardians themselves are resilient. A guardian's state
consists of stable and volatile objects. Resiliency is accomplished by writing the
stable objects to stable storage when a top action commits; only those objects
that were modified by the committing action need be written. The probability of
loss of volatile objects is relatively high, so these objects must contain only
redundant information if the system as a whole is to avoid loss of information.
Such redundant information is useful for improving efficiency, for example, an
index into a database for fast access.

After a crash of the guardian's node, the language support system recreates the
guardian with the stable objects as they were when last written to stable storage.
A process is started in the guardian to recreate the volatile objects. Once the
volatile objects have been restored, the guardian can resume background tasks
and can respond to new handler calls.

Guardians allow a programmer to decompose a problem into units of tightly
coupled processing and data. Within a guardian, processes can share objects
directly. However, direct sharing of objects between guardians is not permitted.
Instead, guardians must communicate by calling handlers, and the arguments to
handlers are passed by value: it is impossible to pass a reference to an object in
a handler call. This rule ensures that objects local to a guardian remain local, and
thus ensures that a guardian retains control of its own objects. It also provides
the programmer with a concept of what is expensive: local objects are close by
and inexpensive to use, while nonlocal objects are more expensive to use. A
handler call is performed using a message-based communication mechanism. The
language implementation takes care of all details of constructing and sending
messages (see [11]).

Guardians are created dynamically. The programmer specifies the node at
which a guardian is to be created; in this way individual guardians can be placed
at the most advantageous locations within the network. The (name of the)
guardian and (the names of) its handlers can be communicated in handler calls.
Once (the name of) a guardian or one of its handlers has been received, handler
calls can be performed on that guardian. Handler calls are location independent,
however, so one guardian can use another without knowing its location. In fact,
handler calls will continue to work even if the called guardian has changed its
location, allowing for ease of system reconfiguration.

Guardians and handlers are an abstraction of the underlying hardware of a
distributed system. A guardian is a logical node of the system, and interguardian
communication via handlers is an abstraction of the physical network. The most
important difference between the logical system and the physical system is
reliability: the stable state of a guardian is never lost (to a very high probability),
and the at-most-once semantics of handler calls ensures that the calls either
succeed completely or have no effect.

3.2 G u a r d i a n S t ruc tu re

The syntax of a guardian definition is shown in Figure 1. 3 A guardian definition
implements a special kind of abstract data type whose operations are handlers.

a In the syntax, optional clauses are enclosed with [], zero or more repetitions are indicated with { },
and alternatives are separated by].

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

390 B. Liskov and R. Scheifler

Fig. 1. Guardian structure.

name = guardian [parameter-decls] is creator-names
handles handler-names

{abbreviations}
{[stable] variable-decls-and-inits}
[recover body end]
[background body end]
{ creator-handler-and-local-routine-definitions}
end name

T h e name of this type, and the names of the handlers , are l isted in the guardian
header. In addition, the type provides one or more creat ion operat ions, called
creators, t ha t can be invoked to create new guardians of the type; the names of
the creators are also listed in the header. Guard ians m a y be parameter i zed ,
providing the abil i ty to define a class of re la ted abs t rac t ions by means of a single
module. Pa ramete r ized types are discussed in [17, 20].

T h e first internal pa r t of a guardian is a list of abbrevia t ions for types and
constants. Next is a list of var iable declarations, wi th opt ional initializations,
defining the guardian state. Some of these var iables can be declared as s t a b l e
variables; the others are volatile variables.

T h e stable s ta te of a guardian consists of all objects reachable f rom the s table
variables; these objects, called stable objects, have their new versions wr i t ten to
stable s torage by the sys tem when top-level act ions commit . A R G U S , like CLU,
has an object -or iented semantics. Variables n a m e (or refer to) objects residing in
a heap storage area. Objects themse lves m a y refer to o ther objects, pe rmi t t ing
recursive and cyclic da ta s t ructures wi thout the use of explicit pointers. T h e set
of objects reachable f rom a var iable consists of the object t ha t var iable refers to,
any objects referred to by tha t object, and so on. 4

Guard ian instances are crea ted dynamical ly by invoking crea tors of the guard-
ian type. For example, suppose a guardian type n a m e d spooler has a c rea tor wi th
a header of the fo rm

create = creator(dev : printer) r e tu rns (spooler)

When a process executes the expression

spooler$ create(pdev)

a guardian object is c rea ted a t the same physical node where the process is
executing and (the name of) the guardian is r e tu rned as the resul t of the call. 5
Guardians can also be crea ted at o ther nodes. Given a var iable home naming
some node,

spooler$ create(pdev) @ home

creates a guardian a t the specified node.
When a crea tor is invoked, a new guardian instance is created, and any

initializations a t t ached to the var iable declarat ions of the guardian s ta te are
executed. T h e body of the crea tor is then executed; typically, this code will finish

4 In languages that are not object oriented, the concept of reachability Would still be needed to
accommodate the use of explicit pointers.
5 As in CLU, the notation t$op is used to name the op operation of type t.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

Guardians and Actions 391

initializing the guardian state and then return the guardian object. {Within the
guardian, the expression self refers to the guardian object.)

Aside from creating a new guardian instance and executing state-variable
initializations, a creator has essentially the same semantics as a handler, as
described in the next section. In particular, a creator call is performed within a
new subaction of the caller, and the guardian will be destroyed if this subaction
or some parent action aborts. The guardian becomes permanent (i.e., survives
node crashes) only when the action in which it was created commits to the top
level. A guardian cannot be destroyed from outside the guardian {except by
aborting the creating action). Once a guardian becomes permanent, only the
guardian can destroy itself, using a de s t roy primitive.

The recover section runs after a crash. Its job is to recreate a volatile state
that is consistent with the stable state. This may be trivial, for example, creating
an empty cache, or it may be a lengthy process, for example, creating a database
index.

After a crash, the system recreates the guardian and restores its stable objects
from stable storage. Since updates to stable storage are made only when top-level
actions commit, the stable state has the value it had at the latest commit of a
top-level action before the guardian crashed. The effects of actions that had
executed at the guardian prior to the crash, but had not yet committed to the top
level, are lost, and the actions are aborted.

After the stable objects have been restored, the system creates a process in the
guardian to first execute any initializations attached to declarations of volatile
variables of the guardian state and then execute the recover section. This process
runs as a top-level action. Recovery succeeds if this action commits; otherwise,
the guardian crashes, and recovery is retried later.

After the successful completion of a creator, or of the recover section after a
crash, two things happen inside the guardian: a process is created to run the
b a c k g r o u n d section, and handler invocations may be executed. The back-
g round section provides a means of performing periodic (or continuous) tasks
within the guardian; examples are given in Section 4. The b a c k g r o u n d section
is not run as an action, although generally it creates top-level actions to execute
tasks, as explained in Section 3.4. 6

3.3 Handlers

Handlers (and creators), like procedures in CLU, are based on the termination
model of exception handling [19]. A handler can terminate in one of a number of
conditions: one of these is considered to be the "normal" condition, while others
are "exceptional" and are given user-defined names. Results can be returned in
both the normal and exceptional cases; the number and types of results can differ
among conditions. The header of a handler definition lists the names of all
exceptional conditions and defines the number and types of results in all cases.
For example,

f i l eLahead~of= handler(entry id: int) returns (int)
signals (printed(date))

6A process that is not running as an action is severely restricted in what it can do. For example, it
cannot call operations on atomic objects or call handlers without first creating a top-level action.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

392 B. Liskov and R. Scheifler

might be the header of a spooler handler used to determine how many requests
are in front of a given queue entry. Calls of this handler either terminate normally,
returning an integer result, or exceptionally in condition printed with a date
result. In addition to the named conditions, any handler can terminate in the
failure condition, returning a string result; failure termination may be caused
explicitly by the user code, or implicitly by the system when something unusual
happens, as explained further below.

A handler executes as a subaction. As such, in addition to returning or signaling,
it must either commit or abort. We expect committing to be the most common
case, and, therefore, execution of a r e t u r n or s ignal statement within the body
of a handler indicates commitment. To cause an abort, the r e t u r n or s igna l is
prefixed with abor t .

Given a variable x naming a guardian object, a handler h of the guardian may
be referred to as x.h. Handlers are invoked using the same syntax as for procedure
invocation, for example,

x.h("read", 3, false)

However, whereas procedures are always executed locally within the current
action, and always have their arguments and results passed by sharing, 7 handlers
are always executed as new subactions, usually in a different guardian, and always
have their arguments and results passed by value.

Let us examine a step-by-step description of what the system does when a
handler is invoked:

(1) A new subaction of the calling action is created.
(2) A message containing the arguments is constructed. Since part of building

this message involves executing user-defined code (see [11]), message con-
struction may fail. If so, the subaction aborts and the call terminates with a
failure exception.

(3) The system suspends the calling process and sends the message to the target
guardian. If that guardian no longer exists, the subaction aborts, and the call
terminates with a failure exception.

(4) The system makes a reasonable at tempt to deliver the message, but success
is not guaranteed. The reason is that it may not be sensible to guarantee
success under certain conditions, such as a crash of the target node. In such
cases, the subaction aborts, and the call terminates with a failure exception.
The meaning of such a failure is that there is a very low probability of the
call succeeding if it is repeated immediately.

(5) The system creates a process and a subaction (of the subaction in step (1)) at
the receiving guardian to execute the handler. Note that multiple instances
of the same handler may execute simultaneously. The system takes care of
locks and versions of atomic objects used by the handler in the proper
manner, according to whether the handler commits or aborts.

(6) When the handler terminates, a message containing the results is constructed,
the handler action terminates, the handler process is destroyed, and the
message is sent. If the message cannot be sent (as in step (2) or (4) above),

7 Somewhat similar to passing by reference. See [17] .

ACM Transact ions on Programming Languages and Systems, Vol. 5, No. 3, Ju ly 1983.

G u a r d i a n s and Ac t i ons • 3 9 3

the subaction created in step (1) aborts, and the call terminates with a failure
exception.

(7) The calling process continues execution. Its control flow is affected by the
terminat ion condition as explained in [19]. For example,

count: int :ffi spool.files ahead__of(enD % normal return
except when printed(at: date):... % exceptional returns

when failure(why: string): . . .
end

Since a new process is created to perform an incoming handler call, guardians
have the ability to execute many requests concurrently. Such an ability helps to
avoid having a guardian become a bott leneck. Of course, if the guardian is running
on a single-processor node, then only one process will be running at a time.
However, a common case is tha t in executing a handler call ano ther handler call
to some other guardian is made. I t would be unacceptable if the guardian could
do no other work while this call was outstanding.

The scheduling of incoming handler calls is performed by the system. Therefore ,
the programmer need not be concerned with explicit scheduling, bu t instead
merely provides the handler definitions to be executed in response to the incoming
calls. An alternative s t ructure for a guardian would be a single process tha t
multiplexed itself and explicitly scheduled execution of incoming calls. We think
our s t ructure is more elegant, and no less efficient since our processes are cheap:
creating a new process is only slightly more expensive than calling a procedure.

As was ment ioned above, the system does not guarantee message delivery; it
merely guarantees that , if message delivery fails, there is a very low probabil i ty
of the call succeeding if it is repeated immediately. Hence, there is no reason for
user code to re t ry handler calls. Rather , as ment ioned earlier, user programs
should make progress by retrying top-level actions, which may fail because of
node crashes even if all handler calls succeed.

3.4 In-Line Actions

Top-level actions are created by means of the action s ta tement

enter topact ion body end

This causes the body to execute as a new top-level action. I t is also possible to
have an in-line subaction:

enter action body end

This causes the body to run as a subaction of the action tha t executes the e n t e r .
When the body of an in-line action completes, it must indicate whether it is

committ ing or aborting. Since committ ing is assumed to be most common, it is
the default; the qualifier a b o r t can be prefixed to any terminat ion s ta tement to
override this default. For example, an in-line action can execute

leave

to commit and cause execution to continue with the s ta tement following the
e n t e r s tatement; to abort and have the same effect on control, it executes

abort leave

Falling off the end of the body causes the action to commit.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

394 B. Liskov and R. Scheifler

3.5 Concurrency

The language as defined so far allows concurrency only between top actions
originating in different guardians. The following statement form provides more
concurrency:

coenter (coarm} end

where

coarm ::= armtag [foreach decl-list in iter-invocation]
body

armtag ::= act ion I topac t ion

The process executing the coenter , and the action on whose behalf it is executing,
are suspended; they resume execution after the c o e n t e r is finished.

A fo r e a c h clause indicates that multiple instances of the coarm will be
activated, one for each item (a collection of objects) yielded by the given iterator
invocation, s Each such coarm will have local instances of the variables declared
in the decl- l i s t , and the objects constituting the yielded item will be assigned to
them. Execution of the c o e n t e r starts by running each of the iterators to
completion, sequentially, in textual order, Then all coarms are started simulta-
neously as concurrent siblings. Each coarm instance runs in a separate process,
and each process executes within a new top-level action or subaction, as specified
by the a r m t a g .

A simple example making use of f o r e a c h is in performing a write operation
concurrently at all copies of a replicated database:

coenter
act ion foreach db : db__copy in all cop ies (. . .)

db. wr i t e (. . .)
end

This statement creates separate processes for the guardian objects yielded by
a l l copies , each process having a local variable db bound to a particular
guardian. Each process runs in a newly created subaction and makes a handler
call.

A coarm may terminate without terminating the entire c o e n t e r either by
falling off the end of its body or by executing a l e ave statement. As before, l e a v e
may be prefixed by a b o r t to cause the completing action to abort; otherwise, the
action commits.

A coarm also may terminate by transferring control outside the c o e n t e r
statement. Before such a transfer can occur, all other active coarms of the
c o e n t e r must be terminated. To accomplish this, the system forces all coarms
that are not yet completed to abort. A simple example where such early termi-
nation is useful is in performing a read operation concurrently at all copies of a
replicated database, where a response from any single copy will suffice:

coenter
act ion foreach db : d b _ c o p y in all cop ies (. . .)

result :-- db.read(. . .)
exit done

end except w h e n done: . . . end

s An iterator is a limited kind of coroutine that provides results to its caller one at a time [17, 20].

ACM Transactions on Programming Languages and Systems, VoL 5, No. 3, July 1983.

Guardians and Actions • 395

Once a read has completed successfully, the exit will commit the read and abort
all remaining reads. The aborts take place immediately; in particular, it is not
necessary for the handler calls to finish before the subactions can be aborted.
(Such aborts can result in orphan handler processes that continue to run at the
called guardians and elsewhere. We have developed algorithms for dealing with
orphans, but they are beyond the scope of this paper.)

There is another form of coen te r for use outside of actions, as in the back -
g r o u n d section of a guardian. In this form the armtag can be p r o c e s s or
topact ion. The semantics is as above, except that no action is created in the
process case.

3.6 Program Development and Reconfiguration

ARGUS, like CLU, provides separate compilation of modules with complete type
checking at compile time (see [17]). Separate compilation is performed in the
context of a program library, which contains information about abstractions (e.g.,
guardian types).

Before creating a guardian at a node, it is first necessary to load the code of
that guardian at that node. Once the code image has been loaded, any number of
guardians of that type can be created at that node. It is also possible to load a
different code image of the same guardian type at the node, and then create
guardians that run that code.

To build a code image of a guardian definition, it is necessary to select
implementations for the data, procedural, and iteration abstractions that are
used, but not for other guardian abstractions. In other words, each guardian is
linked and loaded separately. In fact, each guardian is independent of the
implementation of all other guardians, because our method of communicating
data values between guardians is implementation independent (see [11]). A
guardian is also independent of all abstractions except for those it actually uses.
New abstractions can be added to the library, and new implementations can be
written for both old and new abstractions, without affecting any running guardian.

Guardians are constrained to communicate with other guardians only via
handlers whose types were known when the guardian was compiled. Communi-
cation via handlers of unknown type is not sensible; the situation is exactly
analogous to calling a procedure of unknown type. Of course, a guardian or
handler argument of known type but unknown value can be very useful. We do
provide this: guardians and handlers can be used as arguments in local procedure
calls and in handler calls.

Compile-time type checking does not rule out dynamic reconfiguration. By
receiving guardians and handlers dynamically in handler calls, a guardian can
communicate with new guardians as they are created or become available. For
example, the ARGUS system contains a distributed catalog that registers guard-
ians and handlers according to their type. The catalog would respond to a request
for printer guardians by returning all guardians of type "printer" that previously
had been registered.

In many applications it will be necessary to change the implementations of
running guardians. We are investigating a replacement strategy that permits new
implementations to be provided for running guardians without affecting the users

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

396 • B. Liskov and R. Scheifler

of these guardians [2]. This system also allows for certain kinds of changes in
guardian type (e.g., additional handlers}.

4. A SIMPLE MAIL SYSTEM

In this section we present a simple mail system, designed somewhat along the
lines of Grapevine [1]. This is a pedagogical example: we have chosen inefficient
or inadequate implementations for some features, and have omitted many nec-
essary and desirable features of a real mail system. However, we hope it gives
some idea of how a real system could be implemented in ARGUS.

The interface to the mail system is quite simple. Every user has a unique name
(user__id) and a mailbox. However, mailbox locations are hidden from the user.
Mail can be sent to a user by presenting the mail system with the user's u se r~ id
and a message; the message will be appended to the user's mailbox. Mail can be
read by presenting the mail system with a user's user__id; all messages are
removed from the user's mailbox and are returned to the caller. For simplicity,
there is no protection on this operation: any user may read another user's marl.
Finally, there is an operation for adding new users to the system, and there are
operations for dynamically extending the mail system.

All operations are performed within the action system. For example, a message
is not really added to a mailbox unless the sending action commits, messages are
not really deleted unless the reading action commits, and a user is not really
added unless the requesting action commits.

The mail system is implemented out of three kinds of guardians: mailers,
maildrops, and registries. Mailers act as the front end of the mail system: all use
of the system occurs through calls of mailer handlers. To achieve high availability,
many mailers are used, for example, one at each physical node. All mailers would
be registered in the catalog for dynamic lookup. A maildrop contains the
mailboxes for some subset of users. Individual mailboxes are not replicated, but
multiple, distributed maildrops are used to reduce contention and to increase
availability, in that the crash of one physical node will not make all mailboxes
unavailable. The mapping from use r~ id to maildrop is provided by the registries.
Replicated registries are used to increase availability, in that at most one registry
need be accessible to send or read marl. Each registry contains the complete
mapping for all users. In addition, registries keep track of all other registries.

Two built-in atomic types are used in implementing the mail system:
a tomic~ array and struct. Atomic arrays are one-dimensional and can grow and
shrink dynamically. Of the array operations used in the mail system, new creates
an empty array, addh adds an element to the high end, trim removes elements,
elements iterates over the elements from low to high, and copy makes a complete
copy of an array. A read lock on the entire array is obtained by new, elements,
and copy, and a write lock is obtained by addh and trim. Structs are immutable
(hence atomic) records: new components cannot be stored in a struct object once
it has been created. However, the fact that a struct is immutable does not prevent
its component objects from being modified if they are mutable.

The mailer guardian is presented in Figure 2. Each mailer is given a registry
when created; this registry is the mailer's stable reference to the entire mail
system. The mailer also keeps a volatile reference, representing the "best" access

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

Q ~ , '~ ~.
".~ ~ "~ .~

I ~

~ ~ ~

~ , ~ i ~,, ~ ~-~ o

I

j

L: c~

398 • B. Liskov and R. Scheifler

path into the system. The background code periodically polls all registries; the
first to respond is used as the new best registry.

A mailer performs a request to send or read mail by first using the best registry
to look up the mafldrop for the specified user and then forwarding the request to
that maildrop. A mailer adds a new user by first calling the registry select handler
to make sure the user is not already present and to choose a maildrop; then,
concurrently, the new user/maildrop pair is added to each registry, and the new
user is added to the chosen maildrop. A maildrop (or registry) is added by
creating the mafldrop (or registry) and then concurrently adding it to all registries,
A new mailer is created with the current best registry for its stable reference.

Figure 3 shows the registry guardian. The state of a registry consists of an
atomic array of registries together with a steering list associating an array of
users with each maildrop. When a registry is created, it is given the current
steering list and an array of all other registries, to which array it adds itself. The
lookup handler uses linear search to find the given user's maildrop, The select
handler uses linear search to check if a user already exists, and then chooses
some existing maildrop. The add user handler uses linear search to find the
specified maildrop and then appends the user to the associated user list. The
add user, add~maildrop, and add~regis try handlers perform no error check-
ing because correctness is guaranteed by the mailer guardian.

The maildrop guardian is given in Figure 4. The state of a maildrop consists of
an atomic array of mailboxes; a mailbox is represented by a struct containing a
u s e r _ i d and an atomic array of messages. A maildrop is created with no
mailboxes. The add_use r handler is used to add a mailbox. Note that this
handler does not check to see if the user already exists since the mailer will have
already performed this check. The send~rnail and read__mail handlers use
linear search to find the correct mailbox. When the mailbox is found, send__mail
appends a message to the end of the message array; read ma i l first copies the
array, then deletes all messages, and, finally, returns the copy. Both handlers
assume the user exists; again, the mailer guarantees this.

Now that we have all of the pieces of the mail system, we can show how the
initial configuration of the mail system is created:

reg: registry :-- registry$create(reg list$new(), steer~list$new()) @ homel
m: mailer :ffi mailer$create(reg) @ home2

where reg list and s teer~l is t are defined as in the registry. The resulting mailer
can then be placed in the catalog and used to add maildrops and users, as well as
more registries and mailers.

Finally, we show a simple use of the mail system, namely, sending a message to
a group of users, with the constraint that the message be delivered either to all of
the users or to none of them:

enter action
coenter

action foreach user: user__id in user~group("net")
m. send__mail(user, msg)

end except when no__such__user, failure(*): % ignore failure string
abort leave

end
end

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

G u a r d i a n s and Ac t i ons • 3 9 9

registry = guardian is create
handles lookup, select, all__registries, ping,

add user, add__maildrop, new registry,
add__registry

reg list = atomic__array[registry]
s teer_l is t = atomic__array[steering]
steering = struct[Users: user__list, % users with mailboxes

drop: maildrop] % at this mafldrop
user list -- atomic__array[user__id]

stable regs: reg list % all registries
stable steers: steer list % all users and maildrops

create ffi creator(rlist: reg__list, slist: s teer_l i s t) r e tu rns (registry)
reg_lis t$addh(rl is t , self) % add self to list
regs := rlist
steers '.= Mist
return(self)
end create

lookup = handier(user: u s e r _ i d) r e tu rns (maildrop) signals (no__such_user)
for steer: steering in steer__list$elernents(steers) do

for usr: u s e r _ i d in user list$elements(steer.users) do
if usr = user then return(steer.drop) end
end

end
s ignal no_such__user
end lookup

select = handier(user: u s e r _ i d) r e t u rn s (rnaildrop) s ignals (user__exists)
for steer: steering in steer list$elernents(steers) do

for usr: User__id in user__list$elernents(steer.users) do
if usr = user then signal user exists end
end

end
r e t u r n (. . ,) % choose, for example, maildrop with least users
end select

al l_registries = handler() r e t u rn s (reg list)
return(regs)
end all__registries

ping = handler()
end ping

add__user = handler(user: user__id, drop: maildrop)
for steer: steering in steer__list$elernents(steers) do

if steer.drop = drop
then user__iist$addh(steer.users, user) % append user

r e t u rn
end

end
end a d d _ u s e r

add_rnai ldrop = handler(drop: rnaiMrop)
steer: steering := steering$ {users: user list$new(),

drop: drop}
steer__list$addh(steers, steer)
end add_mai ld rop

new_regis t ry = handler(home: node) r e t u r n s (registry)
reg: registry := registry$create(regs, steers) @ home
return(reg)
end new_regis t ry

add_regis try = handier(reg: registry)
reg_lis t$addh(regs, reg)
end add registry

end registry

Fig. 3. Registry guardian.

ACM Transactions on Programming Langtlages and Systems, Vol. 5, No. 3, July 1983.

4 0 0 • B. Liskov and R. Scheifler

maildrop = guardian is create
handles s e n d _ m a i l , r ead _mail, a d d user

b o x _ l i s t = atomic__array[mai lbox]
mailbox = struct[mail: m s g _ l i s t , % messages for

user. user__id] % this use r
msg list = atomic__array[message]

stable boxes: box__lis t := box__l i s t$new()

create = creator() returns (maildrop)
return(sel f)
end create

s e n d _ m a i l = hand ler (user : user__id, msg: message)
for box: mai lbox in box__l is t$elements(boxes) do

i f box.user = user
then m s g _ l i s t $ a d d h (b o x . m a i l , msg) % append message

return
end

end
end s e n d _ m a i l

read__mai l ffi hand le r (user : user__id) returns (msg list)
for box: mai lbox in box__lis t$elements(boxes) do

f f box.user = user
then mail: msg list :-- m s g _ l i s t $ c o p y (b o x . m a i l)

m s g l i s t$ tr im(box .mai l , 1, O) % delete messages
r e t u r n (m a i l)

end
end

end read__mai l

add__user = h a n d l e r (u s e r : user__id)
box: mai lbox : = ma i lbox $ (mai l : msg__l i s t $ new () ,

user: user]
box__l i s t$addh(boxes , box)
end a d d user

end mai ldrop

Fig. 4. Maildrop guardian.

The message is sent to all users simultaneously. A nonexistent user or a failure to
send a message transfers control outside the coenter, forcing termination of all
active coarms; the outer action is then aborted, guaranteeing that none of the
messages is actually delivered.

4.1 Remarks

One obvious problem with the mailers as implemented is that, if the best registry
for a mailer goes down, the mailer effectively goes down as well, since every task
the mailer performs (including choosing a new best registry) requires communi-
cation with that registry. A better implementation might be for each mailer to
have stable and volatile references to multiple registries, and for mailer handlers
to try several registries (sequentially) before giving up.

Close examination of the mail system reveals places where the particular choice
of data representation leads to less concurrency than might be expected. For
example, in the maildrop guardian, since both send__mail and read__mail
modify the message array in a mailbox, either operation will lock out all other
ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

Guardians and Actions 401

operations on the same mailbox until the executing action commits to the top
level. Even worse, since both send__mail and read__mail read the mailbox array,
and add user modifies that array, an add user operation will lock out all
operations on all mailboxes at that maildrop. In the registry guardian, an
add user operation will lock out lookup operations on all users with mailboxes
at the given maildrop, and an add maildrop operation will lock out all lookup
operations.

In a traditional mail system this lack of concurrency might be tolerable, but
there are other, similar systems where it would not be acceptable. What is needed
are data types that allow more concurrency than do atomic arrays. For example,
an associative memory that allowed concurrent insertions and lookups could
replace the mailbox array in maildrops and the steering list in registries; a queue
with a "first-commit first-out" semantics, rather than a "first-in first-out" seman-
tics, could replace the message arrays in maildrops. Such types can be built as
user-defined atomic types, although we do not present implementations here.

The concurrency that is built in to the mail system can lead to a number of
deadlock situations. For example, in the registry guardian, any two concurrent
add user or add registry requests will almost always deadlock, and two
add rnaildrop requests can deadlock by modifying registries in conflicting
orders. Some of these deadlocks would disappear if data representations allowing
more concurrency were used. For example, the use of a highly concurrent
associative memory for the steering list would allow all add maildrop requests
to run concurrently, as well as all add user requests for distinct users. Other
deadlocks can be eliminated simply by reducing concurrency. To avoid deadlocks
between add registry requests, all new__registry calls could be made to a
distinguished registry, and new__registry could obtain a write lock on the registry
list before creating the new registry.

It may be argued that the strict serialization of actions enforced by the
particular implementation we have shown is not important in a real mail system.
This does not mean that actions are inappropriate in a mail system, just that the
particular granularity of actions we have chosen may not be the best. For
example, if an action discovers that a user does (or does not) exist, it may not be
important that the user continues to exist (or not to exist} for the remainder of
the overall action. It is possible to build such "loopholes" through appropriately
defined abstract types. As another example, it might not be important for all
registries to have the most up-to-date information, provided they receive all
updates eventually. In particular, when adding a user, it may suffice to guarantee
that all registries eventually will be informed of that user. This could be accom-
plished by keeping appropriate information in the stable state of one of the
registries, and using a background process in that registry to (eventually) inform
all other registries.

5. SUMMARY AND CONCLUSIONS

ARGUS has two main concepts: guardians and actions. Guardians maintain local
control over their local data. The data inside a guardian are truly local; no other
guardian has the ability to access or manipulate the data directly. The guardian
provides access to the data via handler calls, but the actual access is performed

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

402 B. Liskov and R. Scheifler

inside the guardian. It is the guardian's job to guard its data in three ways: by
synchronizing concurrent access to the data, by requiring that the caller of a
handler have the authorization needed to do the access, and by making enough
of the data stable so that the guardian as a whole can survive crashes without
loss of information.

While guardians are the unit of modularity, actions are the means by which
distributed computation takes place. A top-level action starts at some guardian.
This action can perform a distributed computation by making handler calls to
other guardians; those handler calls can make calls to still more guardians; and so
on. Since the entire computation is an atomic action, it is guaranteed that the
computation is based on a consistent distributed state and that, when the
computation finishes, the state is still consistent, assuming in both cases that user
programs are correct.

ARGUS is quite different from other languages that address concurrent or
distributed programs (e.g., [3, 7, 12, 24]). Those languages tend to provide modules
that bear a superficial resemblance to guardians, and some form of communication
between modules based on message passing. For the most part, however, the
modules have no internal concurrency and contain no provision for data consis-
tency or resiliency. Indeed, the languages completely ignore the problem of
hardware failures. In the area of communication, either a low-level, unreliable
mechanism is provided, or reliability is ignored, implying that the mechanism is
completely reliable, with no way of actually achieving such reliability.

Although a great many details have been omitted, we hope enough of the
language has been described to show how ARGUS meets the requirements stated
in the introduction. Consistency, service, distribution, concurrency, and extensi-
bility are all well supported in ARGUS. However, there are two areas that are
not well supported. One is protection. Guardians could check for proper author-
ization before performing requests, for example, by requiring principal IDs as
arguments to handler calls. But, there is no way within the language to express
constraints as to where and when guardians may be created. For example, the
owner of a node may wish to allow a particular guardian to be created at that
node but disallow that guardian from creating other guardians at the node. These
kinds of protection issues are under investigation.

Another area that may need work is support for scheduling. Within a guardian
a separate process is automatically created for each handler call. This structure
provides no direct support for scheduling incoming calls. If one wanted to give
certain incoming calls priority over others, this could be done explicitly (by means
of a shared monitorlike [13] object). If one wanted certain incoming calls to take
priority over calls currently being executed, this could be done {very awkwardly)
by programming handlers to relinquish control periodically. However, if one
wanted to make priorities global to an entire node, rather than just within a single
guardian, there would be no way to accomplish this in ARGUS. We are not
convinced that priorities are required frequently enough to justify any additional
mechanism. We prefer to adopt a "wait-and-see" attitude, although we are
investigating priority mechanisms.

Supporting atomic activities as part of the semantics of a programming lan-
guage imposes considerable implementation difficulties. We have completed a

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

Guardians and Actions 403

preliminary, centralized implementat ion of the language, ignoring difficult prob-
lems such as lock propagation and orphan detection. We are working on a real,
distributed implementation. At this point it is unclear how efficient such an
implementat ion can be.

The approach to resiliency taken in A R G U S represents an engineering com-
promise given the current state of hardware. If ultrareliable hardware does
become practical, it may no longer be necessary to compensate for hardware
failures in software. This would simplify the structure of guardians since stable
objects and the recover section would no longer be needed. Furthermore, the
implementat ion of A R G U S would become more efficient.

However, regardless of advances in hardware, we believe atomic actions are
necessary and are a natural model for a large class of applications. If the language/
system does not provide actions, the user will be compelled to implement them,
perhaps unwittingly reimplementing them with each new application, and may
implement them incorrectly. For some applications, actions simply may be a
convenient tool, not a strictly necessary one. We believe tha t actions can be
implemented efficiently enough that they will be used in applications even when
they are not strictly necessary. We expect to get a much more realistic idea of the
strengths and weaknesses of the language once the distributed implementat ion is
complete and we can run applications.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the contributions made by members of the
ARGUS design group, especially Maurice Herlihy, Paul Johnson, and Bill Weihl.
The paper was improved by the comments of the referees and many others.

REFERENCES

1. BIRRELL, A.D., LEVIN, R., NEEDHAM, R.M., AND SCHROEDER, M.D. Grapevine: An exercise in
distributed computing. Commun. ACM 25, 4 (Apr. 1982), 260-274.

2. BLOOM, T. Dynamic Module Replacement in a Distributed Programming Environment. Ph.D.
dissertation, Laboratory for Computer Science, Massachusetts Inst. of Technology, Cambridge,
Mass., to appear.

3. BRINCH HANSEN, P. Distributed processes: A concurrent programming concept. Commun. ACM
21, 11 (Nov. 1978), 934-941.

4. DAVIES, C.T. Data processing spheres of control. IBMSyst. J. 17, 2 (1978), 179-198.
5. DAVIES, C.T., JR. Recovery semantics for a DB/DC system. In Proceedings, ACM 73: Annual

Conference, Aug. 1973, pp. 136-141.
6. ESWARAN, K.P., GRAY, J.N., LORIE, R.A., AND TRAIGER, I.L. The notions of consistency and

predicate locks in a database system. Commun. ACM 19, 11 (Nov. 1976), 624-633.
7. FELDMAN, J.A. High level programming for distributed computing. Commun. ACM 22, 6 (June

1979), 353-368.
8. GRAY, J.N. Notes on data base operating systems. In Lecture Notes in Computer Science, vol.

60: Operating Systems, An Advanced Course, R. Bayer, R.M. Graham, G. Seegmtiller (Eds.).
Springer-Verlag, New York, 1978, pp. 393-481.

9. GRAY, J.N., LORIE, R.A., PUTZOLU, G.F., AND TRAIGER, I.L Granularity of locks and degrees of
consistency in a shared data base. In Modeling in Data Base Management Systems, G.M. Nijssen
(Ed.). Elsevier North-Holland, New York, 1976.

10. GRAY, J., MCJONES, P., BLASGEN, M., LINDSAY, B., LORIE, R., PRICE, T., PUTZOLU, F., AND
T~IOER, I. The recovery manager of the System R database manager. Comput. Surv. (ACM)
13, 2 (June 1981), 223-242.

ACM Transactions on Programming Languages and Systems, Vo]. 5, No. 3, July 1983.

404 B. Liskov and R. Scheifler

11. HERLIHY, M., AND LISKOV, B. A value transmission method for abstract data types. ACM
Trans. Program. Lang. Syst. 4, 4 (Oct. 1982), 527-551.

12. HOARE, C.A.R. Communicating sequential processes. Commun. ACM 21, 8 (Aug. 1978), 666-677.
13. HOARE, C.A.R. Monitors: An operating system structuring concept. Commun. ACM 17, 10 (Oct.

1974), 549-557.
14. LAMFORT, L. Towards a theory of correctness for multi-user data base systems. Rep. CA-7610-

0712, Massachusetts Computer Associates, Wakefield, Mass., Oct. 1976.
15. LAMPSON, B., AND STURGIS, H. Crash recovery in a distributed data storage system. Xerox

PARC, Palo Alto, Calif., Apr. 1979.
16. LISKOV, B. On linguistic support for distributed programs. In Proceedings, IEEE Symposium on

Reliability in Distributed Software and Database Systems, Pittsburgh, Pa., July 1981, pp. 53-60.
17. LISKOV, B., ATKINSON, R., BLOOM, T., Moss, E., SCHAFFERT, J.C., SCHEIFLER, R., AND SNYDER,

A. Lecture Notes in Computer Science, vol. 114: CL U Reference Manual. Springer-Verlag, New
York, 1981.

18. LISKOV, B., AND SCHEIFLER, R. Guardians and actions: Linguistic support for robust, distributed
programs. In Conference Record of the 9th Annual ACM Symposium on Principles of Program-
ming Languages, Albuquerque, N.M., Jan. 25-27, 1982, pp. 7-19.

19. LisKov, B., AND SNYDER, A. Exception handling in CLU. IEEE Trans. Softw. Eng. SE-5, 6
(Nov. 1979), 546-558.

20. LISKOV, B., SNYDER, A., ATKINSON, R., AND SCHAFFERT, C. Abstraction mechanisms in CLU.
Commun. ACM 20, 8 (Aug. 1977), 564-576.

21. LISKOV, B., AND ZILLES, S.N. Programming with abstract data types. In Proceedings, ACM
SIGPLAN Conference on Very High Level Languages. SIGPLAN Notices (ACM) 9, 4 (Apr.
1974), 50-59.

22. LOMET, D. Process structuring, synchronization, and recovery using atomic actions. In Proceed-
ings of an ACM Conference on Language Design for Reliable Software. SIGPLAN Notices (ACM)
12, 2 (Mar. 1977).

23. Moss, J.E.B. Nested Transactions: An Approach to Reliable Distributed Computing. Ph.D.
dissertation and Tech. Rep. MIT/LCS/TR-260, Laboratory for Computer Science, Massachusetts
Inst. of Technology, Cambridge, Mass., 1981.

24. PRELIMINARY ADA REFERENCE MANUAL. SIGPLAN Notices (ACM) 14, 6 (June 1979), pt. A.
25. RANDELL, B. System structure for software fault tolerance. IEEE Trans. Soflw. Eng. SE-1, 2

(June 1975), 220-232.
26. REED, D.P. Naming and Synchronization in a Decentralized Computer System. Ph.D. disser-

tation and Tech. Rep. MIT/LCS/TR-205, Laboratory for Computer Science, Massachusetts Inst.
of Technology, Cambridge, Mass., 1978.

27. ROSENKRANTZ, D.J., STEARNS, R.E., AND LEWIS, P.M., II. System level concurrency control for
distributed database systems. ACM Trans. Database Syst. 3, 2 (June 1978), 178-198.

28. SHRIVASTAVA, S.K., AND BANATRE, J.P. Reliable resource allocation between unreliable pro-
cesses. IEEE Trans. Softw. Eng. SE-4, 3 (May 1978), 230-240.

29. SPECTOR, A.Z. Performing remote operations efficiently on a local computer network. Commun.
ACM25, 4 (Apr. 1982), 246-260.

30. WEIHL, W., AND LISKOV, B. Specification and implementation of resilient, atomic data types.
Computation Structures Group Memo 223, Laboratory for Computer Science, Massachusetts
Inst. of Technology, Cambridge, Mass., Dec. 1982.

Received November 1981; revised September 1982; accepted November 1982

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

