
Reimplementing the Cedar File System
Using Logging and Group Commit

Robert Hagmann
Xerox PARC

Abstract: The workstation file system for the Cedar
programming environment was modified to improve its
robustness and performance. Previously, the file system
used hardware-provided labels on disk blocks to increase
robustness against hardware and software errors. The new
system does not require hardware disk labels, yet is more
robust than the old system. Recovery is rapid after a crash.
The performance of operations on file system metadata,
e.g., file creation or open, is greatly improved.

The new file system has two features that make it
atypical. The system uses a log, as do most database
systems, to recover metadata about the file system. To gain
performance, it uses group commit, a concept derived from
high performance database systems. The design of the
system used a simple, yet detailed and accurate, analytical
model to choose between several design alternatives in
order to provide good disk performance.

1. Introduction

Workstation file systems ought to provide good
performance, rapid crash recovery, and robustness. This
paper will discuss four implementation approaches used to
achieve these goals in the reimplemented Cedar
workstation file system:

1. log-based recovery for metadata, such as the file
name table,

2. use of group commit to avoid some disk writes,

3. a design based on a simple performance model
that captures the timing characteristics of disks,
and

4. techniques (e.g., writing key system data in two
places) to increase the robustness of the system.
These techniques are well known, but they were
implemented at little performance cost because of
the use of the log and group commit.

PARC has a history of building file systems that are
quite robust. Cedar [Swin86] is the programming
environment in use at Xerox PARC/CSL. To be accepted
by the Cedar users, the new file system had to be at least as
robust as the existing system. The new file system is part of
the Cedar release of March 1987, which runs on present
hardware.

File systems have been studied extensively. For
example, McKusick et al. reported on their improvements
to the performance of the UNIX ~ file system [McKu84].
The work reported here has been done in the tradition of
the Xerox workstation file systems: the Alto file system
[Lamp79a], the Pilot file system [Rede80], and the Cedar
file system [Schr85].

What distinguishes this work from other file systems is
that it incorporates some ideas from database systems.
Logging is commonly used in these systems; see [Gray79]
for a discussion of logging. Group commit is part of the
lore of database systems: a reference to it is in [DeWi84].

2. History, Terminology and Background

Cedar currently runs on the "D-machine" architecture,
exemplified by the Dorado [Lamp81] and Dandelion
computers. These D-machines use the Trident disk
interface that permits an implementation of "labels" for
every disk sector (see below for a discussion of labels). A
new VLSI multiprocessor workstation, the Dragon
[McCr84], is under development and will conform to some
standard I /O interface that will not support labels. Thus, to
port the Cedar operating system to the Dragon, the existing
file system required modification. This provided an

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

UNIX is a registered trademark of AT&T Bell Laboratories.

© 1987 A C M 089791-242-X/87/0011/0155 $1.50
155

opportunity to improve the performance and robustness of
the file system.

One of the features of the Alto [Thac79] and its
successors has been their robust file system. A robust
system is one that continues to operate (nearly) correctly in
the presence of some class of errors. These file systems are
robust against single page disk errors and memory smashes.

In the Trident disk interface, each sector has an
additional field, the label field, usually not found in other
interfaces. PARC file systems for these disks use the label
to mark each sector with information identifying the sector.
In normal operation, before a sector's data is read or
written, the label is verified against a label computed by the
file system. If revolutions are not to be dropped, this check
must be performed in microcode. The addition of the label
field makes it possible to detect, in hardware and
microcode, errors such as wild writes. File allocation,
extension, contraction, and deletion operations write the
labels. Also, it is possible to scavenge the file system; by
reading the labels and interpreting some of the disk sectors,
file system structural information, such as the free page
map and the file name table, can be reconstructed.

The Cedar File Package and File System, FS, together
implement the abstraction of a named file [Schr85]. A file
is a sequence of pages, logically numbered beginning with
zero. The File Package is concerned with allocating and
deleting flies, opening them, reading and writing file pages,
and keeping track of free pages. It specifically does not
provide file names. This function is performed by FS. FS
keeps the names of all the files in its file name table, which
might be called a directory or catalog in other systems. For
the rest of this paper we will call the previous version of the
file system CFS (as in [Schr85]), and call the
reimplementation FSD (FS for Dragon).

In CFS, a file has two kinds of sectors: header sectors
and data sectors. Header sectors contain file properties (e.g.,
the file's name, length and create date) and a run table
describing the extents of the file. The header sectors serve
about the same purpose as the inodes do in the UNIX file
system [Bach86], but have a different implementation.
Data sectors store the contents of the file.

The Cedar File Package keeps a bit vector as a hint for
which disk pages are free. This is called the Volume
Allocation Map (VAM). There are no invariants associated
with the VAM. Free pages may be lost and file creation
may be somewhat slow, but these are judged to be
acceptable performance problems and do not affect the
integrity of the system.

3. Requirements for FSD

Five prime requirements for the file system are
relevant here. Other requirements that are more system
specific willnot be covered in this paper.

First, the system should be robust against a hardware
sector error. An error on any sector on the disk should only
affect the file that contains that sector. The failure model

allows for one or two consecutive sectors to fail, but longer
contiguous failures are considered to be a massive failure
from which complete recovery may not be possible. A flaw
on the disk or a failed write usually damages at most one
sector, but occasionally two contiguous sectors are
damaged. More stringent requirements (e.g., loss of a
whole track) can be met within the framework of the design
presented below, but it would complicate the algorithms
and have a minor performance impact. Loss of any part of
the file name table should never occur due to a single sector
failure. Massive failures (e.g., a head crash) are non-
recoverable, except from backup. Mirrored hardware could
be used to guard against massive failures [Lamp79b].

Second, the file system should be high performance. It
must be designed so that the normal cases of read, write,
create, and delete operate near "hardware speed."

Third, it should be robust against some software errors.
FSD protects itself against two types of errors: memory
smashes produced by other software and some classes of
internal bugs.

Fourth, it should have fast recovery. Loss o f a sector
should not force a time consuming operation such as
scavenge, which scans the disk and rebuilds the file name
table. This is particularly critical as disk capacity continues
to grow.

Finally, the system should use commercially available
disk hardware. A new, label-free design is required.

4. Design Overview
CFS and FSD differ in the location and contents of

their disk resident data structures. Table i shows a slightly
simplified diagram of the location of file system metadata.

CFS FSD
File Name Table File Name Table

text name text name
version version
keep keep
uid uid
header page 0 disk address run table

byte size
Headers create time

run table
byte size Leaders
keep uid
create time preamble of run table
version checksum of run table
text name

Labels
uid
page number
page type (header, free, data)

Table 1. Disk Data Structures for Local Files in CFS and
FSD

156

There are three types of file name table entries in CFS and
FSD: local files, symbolic links to remote files, and cached
copies of remote files. The table only compares local files.
This is sufficient to give a sense of the differences and
reduces complexity in the table.

CFS splits the naming, property, and other
information about files between three disk entities: the file
name table, header sectors for files, and labels for every
disk sector. To open a file from its name, the name is
looked up in the file name table. The unique identifier
(uid) and the "header page 0 disk address" are used to
compute a label for the header of the file. The page at the
disk address is read to get the file header. This gives CFS
the run table and all the other properties for the file. A bug
in the file system will often show up as an error in
comparing the computed label with the disk label.

Note that most of the data is replicated or can be
recomputed. For example, the "text name" of a file is
stored both in the file name table and the header for the
file. Also, the run table can be recomputed by reading all
of the labels.

CFS creates a one byte file by finding three free pages
from the VAM, reading their labels to check that they are
really free, writing the labels to claim them for the file,
writing the header, updating the file name table, writing the
byte, and rewriting the header. Note that this is (at least)
six I/O's.

FSD moves all the header information from the file
headers directly into the file name table. While CFS kept
most critical information in two places, FSD keeps all its
information in the file name table. This improves the
locality of the file system. Redundancy is achieved in FSD
by keeping two copies of the file name table; in CFS
redundancy was achieved by keeping different data
structures.

FSD also has a leader page for each file. This page is
used only for software checking (except for three files
during the boot sequence). It is not used for recovery.

Changes to the file name table and leader pages are
written to a log. The log is written such that there are two
copies of all log records. Logging makes atomic update
easy, delays some updates, and reduces the number of
writes necessary for an update. Although logging may not
be a cost-effective technique for the data of a file system, it
is effective for the metadata [Need87].

Group commit batches a set of updates together for a
log write. The log is written (if necessary) every half
second. Group commit reduces the number of writes to the
log.

FSD creates a one byte file by finding two free pages
from the VAM, updating the file name table, and writing
the leader and the data page. A file create typically does
one I /O synchronously: the combination of the write of
the leader and data pages. The create also dirties some file
name table pages that are asynchronously logged and
eventually written back to the file name table.

5. Design Discussion

The design described here met the file system
requirements, performed the best of the designs considered
(as predicted by the analysis), and scaled well to slow-
seeking but high-transfer-rate disks. The principle design
concept is locality on the disk. Information that is needed,
generated, recovered, or retrieved together benefits from
proximity on the disk.

5.1 File name table

The file name table maps a file name into a file. The
file name tables in CFS and FSD are kept in a B-tree. The
information about each file in CFS is split between the B-
tree and the file header. In FSD, the run tables and file
properties, formerly stored in the file header, are kept in the
file name table.

Keeping the name and property information together
is desirable for operations over many files such as "list" and
"open." There is no need for a disk read for the properties
since they are already available in the file name table. The
file name table is preallocated to sectors near the central
cylinder of the logical volume. This reduces disk head
motion.

The unique identifier and the file's run table can be
stored directly in the file name table since all files have (at
most) one name. If files could have more than one name,
such as with the multiple hard links in the UNIX file
system, this optimization would be more difficult.

To improve robustness, the file name table is written
twice: every page is written on two different sectors with
independent failure modes. Due to the extensive buffering
provided by the log (see below), the overhead for double
writing is not excessive. When a page is read, both copies
are read and checked.

5.2 Leader pages

Files in FSD consist of a single leader page and the
data pages. The leader page doesn't contain any
information needed for operation, but provides an optional
check for the proper operation of the system. Leader pages
and the file name table are different data structures that are
mutually checking. Leader pages are a key element in the
robustness of FSD (see section 5.8, Robustness, below).

5.3 Log-based recovery

Atomic update of metadata is a property required in
file systems. However, CFS used a B-tree package that did
not have atomic update. While complicated splits or joins
were being done in the tree, the tree could be left in an
inconsistent state by a crash. Consistency was reestablished
by scavenging, although this was a slow operation (an hour
or more on a 300 megabyte disk). Further, the name table
pages spanned multiple disk pages and a partial write could
corrupt a name table page.

A lesson learned in building database systems is that
performance can be gained and consistency achieved by

157

writing updates to a log on stable storage. Data spread over
the disk can be logically and atomically updated with a
single disk write to the log. Updates are applied to buffered
copies of pages, but the copies are not forced to disk - they
are just written to the log. The writes of the buffers may be
delayed (once logged) in anticipation of a further update to
the page (a hot spot) or the writes may be done at a more
convenient time.

In comparison, some systems do synchronous writes
for consistency (see [Bach86], sections 5.16.1 and 5.16.2, for
a good discussion of the UNIX file system.) Synchronous
writes require that the writes be performed in a particular
order before an operation can complete (e.g., a file create in
UNIX writes the inode to disk before returning).
Synchronous writes tend to do more writes than logging
and the writes are not localized. Logs have been used
previously for file servers. Alpine [Brow85] logs updates to
the file name table and file contents, but not to the
allocated page map. DFS [Stur80] used a variation of
logging called intention lists.

A log in FSD is used only for changes to the file name
table and to the leader pages. It logs physical pages and is.a
redo log [Gray79]. That is, it records images of changed
pages that must be (re)written if the system crashes.
Logging allows atomic update of the file name table and the
leader pages. Like the file name table, the log is allocated
to sectors near the central cylinder to minimize head
motion.

The log could also be used to record changes to the
VAM and file data pages. The VAM is maintained in a
volatile form (see section 5.5, Free Pages, below) so it does
not have to be logged. VAM logging would greatly
decrease worst case crash recovery time from about twenty
five seconds to about two seconds. VAM logging was not
done since it was a complicated modification, worse case
recovery is rare, and recovery was fast enough anyway.

In CFS and FSD, data hot spots are rare. Both systems
support versions for files. Most files are written exactly
once, Hence, the logging of the data pages is not very
attractive: logging data pages would come close to
doubling the number of pages written for file data.

The log is kept as a circular disk file. New log records
are appended to the log by synchronously writing the new
record to the file. Since the file is circular, there are
potential problems in overwriting data while it is still
needed, and coordinating the writing of file name table
pages and leader pages. Database systems typically use
complicated algorithms to make use of almost all of the log.
FSD uses a simple algorithm.

First consider just the file name table pages. FSD
maintains a cache for pages of the file name table. Updates
are applied to pages in the cache and then logged. The log
is divided into thirds. FSD records in the cache the identity
of the third where the page was last logged. When the
current log write is about to enter a new third, there may be
data logged in this new third that must be rewritten to disk.
The only disk resident copy of the data is in the log and it

will be overwritten soon. Any pages logged in this new
third, but not logged in a later third, are written to the file
name table by the logging code. The pages to be written
are discovered by scanning the cache looking for pages that
were most recently written into this new third. The cache is
maintained such that the "dirty but logged" pages are kept
in the cache; the write of the pages to the file name table on
the disk is directly from the cache.

Due to high locality in the file name table, the number
of name table pages normally written is nearly zero. It is
usually the case that a dirty name table page will have been
recorded in a newer third, and thus no write will be
required. Leader pages are also logged. Leader pages for a
file create are normally written by piggybacking the write
on the next operation to the file thereby avoiding a write by
the logging code. Otherwise, they are written during entry
into the third where they were logged. The only times
pages are written to the file name table are during entry
into a new third and during crash recovery. This simple
algorithm averages 5/6 ths of the log in use.

Log records that are nearly the size of the log file call
for drastic measures that will not be covered here, but
which are handled in the system. A log entry that is longer
than the log file will cause a crash, but the log is forced long
before this should occur.

Any system that keeps its permanent data on disk must
be concerned with disk errors. The model of disk errors
used in FSD is that only one error will occur at a time and it
will damage one or two consecutive sectors. With this
failure model, multi-sector writes may be only partly done.
When writing the last two pages, either both are transferred
successfully, the last page is detectably damaged but the
next to last is transferred successfully, or both pages are
detectably damaged (note similarities with the weak atomic
property in [Stur80]). Hence, it is only necessary to avoid
writing replicated copies of a page into adjacent sectors. No
single disk write can damage both copies.

With this in mind, the details of the log format can be
described. A pointer to the start of the first valid record in
the oldest third is kept in page zero (replicated in page two)
of the log. The pointer is updated whenever a new third of
the log is entered, after the pages in the to-be-overwritten
third are written to disk. Each log entry is comprised of a
header page, a blank page, a copy of the header page, the
data pages being logged, an end page, copies of the data
pages being logged, and a copy of the end page. The same
data is never written to adjacent pages. Failure of the write
at any point can be detected when the log is read by
matching the start and end page copies. Single or double
page errors can be corrected from the other copy. The end
of the log is detected by reading a header page pair and
checking log record numbers, boot count, end pages, and
special "bit patterns in the header page.

5.4 Group commit

The system also implements a variant of group commit
[DeWi84]: a set of updates are grouped together in one log

158

write to amortize the cost of the log write disk I/O over
several updates. Where databases group the updates of
independent users, FSD groups some updates of the
workstation owner. FSD forces its log twice a second. This
induces a certain degree of uncertainty about when some
modifications to the file system are permanent, but the
uncertainty is only halfa second. Clients may force the log.

In the event of a crash, any workstation user must
determine the state of the system anyway. Loss of up to a
half a second is not significant since it is regained in
increased performance of a few seconds of normal
operations. The last-used-time for cached copies of remote
files is an excellent example of data that does not require
exact update. Although uncertainty cannot be tolerated in
a database or a transaction system, it is already tolerated in
workstations with existing file systems.

The use of group commit also helps with hot spots.
Bulk updates are often done to the file name table
[Schm82]. These updates are normally localized to a sub-
directory, which fits on a few pages. These pages are
rapidly dirtied by the bulk updates. By doing group
commit, the log is consumed more slowly and written less
often. Moreover, the name table itself is written
infrequently. One benchmark measured the combination
of logging and group commit as reducing the number of
I/O's for metadata by a factor of 2.98 during these bulk
operations; the total reduction was a factor of 2.34 for all
I/O's. These factors may be improved somewhat by using a
bigger log and lengthening the time between commits.

Log records vary in size depending on activity.
Records have five pages of overhead and write twice the
data to be logged. An open of a cached file from a file
server changes the last-used-time in the file properties. If
this were the only update during a group commit period,
then it would be recorded as a one data page record. This is
logged in seven 512 byte sectors. The longest log record
observed is 83 sectors long. Under high load, a typical log
record has 14 pages logged, for a log record size of 33
sectors.

5.5 Free pages

The free page information is kept in a bitmap called
the VAM. Updates to the VAM could be made by
synchronous disk writes. FSD avoids all disk writes during
normal operations by keeping the VAM in volatile
memory. During a controlled shutdown and idle periods,
the VAM is written to disk. During a boot, the VAM is
read from disk if it has been properly saved. If not, it is
reconstructed from the file name table. Since the file name
table is a compact structure with a great deal of locality, it
can be processed quickly. The time to reconstruct the
VAM on a Dorado with a 300 Megabyte file system is
typically twenty seconds.

One complication in maintaining free pages is that the
pages are not really free until the delete-is committed. They
cannot be allocated to a new file sineelhey might-then be
written. Pages in deleted-files are kept in a shadow bitmap.

When a commit occurs, the pages marked free in the
shadow bitmap are marked free in the VAM.

5.6 Page allocator

The File Package in Cedar allocates pages in runs
(often called extents). The allocator in CFS performed
adequately, except that it tended to fragment the free space.
Large free blocks of space were broken up by small files. A
large fraction of files are small. A measurement of one
system shows 50% of files are less that 4,000 bytes but use
only 8% of the sectors.

FSD partitions the disk into big and small file areas to
curtail fragmentation. The areas are only hints: a big file
may have pages in the little file area. This is similar to
many memory allocators: dynamic storage is grown
starting from small addresses, while the stack is grown from
the end of memory towards small addresses.

This allocator should work very well in FSD. Most of
the small files are cached copies of files stored on file
servers. The size of these files are known when they are
fetched and the sizes never change. New versions of files
may be cached, but old versions are immutable (except that
they may be flushed).

5.7 File open

Opening a file does not usually require an I/O. The
leader page is normally verified on the first access to a file
by piggybacking its read with the access. The first data
access is almost always to the first data page, and the leader
page is the previous physical page on the disk. Hence, it
usually costs only the transfer time for a page to read the
leader page.

5.8 Robustness

Using different data structures and algorithms is a well
known method to detect bugs: both CFS and FSD use this
technique. Leader pages have detected many bugs in FSD.
However, leader pages are not as effective as the headers
and labels of CFS. Labels checked nearly every file system
I/O. In FSD, bugs in the page allocator, logging, or crash
recovery cannot be detected when they occur. The bugs are
detected later, but they are harder to track down and may
have done damage to the file system. FSD keeps pages
cached from the file name table as read-only except when
they are being updated. This is to catch wild stores, but this
has never occurred.

CFS rarely took label errors that were due to incorrect
software. The scavenge program did not read the labels to
verify the run tables stored in the headers. Hence, the
header and label redundancy was not fully exploited. The
amount of code that must be correct to maintain minimal
system consistency has been increased from about four
pages to ten pages. From analyzing system failures and
measuring the system, it was estimated that elimination of

-the header and label redundancy would have few adverse
effects.

FSD when compared -to CFS is robust against six

159

additional types of errors. First, multi-page B-tree updates
were not atomic. Second, a partial write of the file name
table could produce an inconsistent page. Logging prevents
both of these. Note also that the log writes two copies of all
pages. Third, the file name table could have bad pages; it
now is replicated. Fourth, the VAM can have disk errors;
these are recovered by reconstructing the VAM. Finally,
two kinds of pages needed in booting could become bad;
they are now replicated.

5.9 Recovery

Recovery is fast and easy. There are two types of
recovery. First, the VAM can be reconstructed using the
name table (see section 5.5, Free Pages, above).

Second, the file name table and labels are recovered
from the log. The log is a physical redo log and the
algorithm to perform recovery is simple. Log records are
read and the copies of pages in the log are written to disk.
Recovery rarely takes more than two seconds on the current
hardware.

Scavenge in CFS was infrequent but very time
consuming. Users do not like their machines being
unavailable for an hour or more. Although in principle the
replication and recovery in CFS protects the file system, the
lack of locality of the data structure makes recovery too
expensive.

6. Performance Analysis

Why choose one design instead of another? How
much performance does a feature deliver? How much does
replication cost? How do existing systems perform? One
way to answer questions like these is to construct a model.

The model used in the design of FSD computes the
expected average case times for typical file operations.
These operations included create, delete, list, open (without
data I/O), and recovery from a disk error. All models used
caches for all disk resident data. The caches were assumed
to hit if the information is small (e.g., in the VAM), and to
hit except for the leaf nodes for large structures such as the
file name table. Hits for leaf nodes were modeled by
simple probability distributions.

In the design of file systems, it is common to use the
estimated number of I /O operations as the performance
metric. Unfortunately, this metric does not capture the
rotational and radial position of the disk heads. In
particular, lost revolutions, sector clustering by cylinder,
read then immediate re-write of sectors, and short seeks are
not adequately modeled.

Each design alternative for FSD was analyzed in terms
of its effect upon each operation. The numbers of seeks,
short seeks (a few cylinders), latencies (half a revolution),
lost revolutions, and transfer time were estimated by
analyzing and scripting the necessary operations. The
scripts incorporated any known locality, both rotational and
radial (e g., dropped revolutions and same cylinder seeks).
It was assumed that there would be no interference in-using

the disk. Estimates were made for both hitting in the file
name table cache and for missing.

The idea is quite simple. Based on the code or
documentation, analyze the algorithm to find out where it
will do I/O's. If an 1/O will be on the same (or nearby)
cylinder or if the rotational position of the disk is known,
then take this rotational and radial position into account in
computing the time for the I/O. Compute both the cache
hit and cache miss cases, and compute a weighted average.

By way of explaining the script method, here is an
example of the first three entries in a script that creates a
one sector file in CFS:

1) Verify free pages: 1 seek, t latency, 3 page transfers

2) Write header labels: (revolution - 3 page transfers), 2 page

transfers

3) Write data labels: revolution, 1 page transfer

4)...

The file needs three pages: two for the header and one
for data. Free pages are found in the VAM without
incurring an I/O. The pages have to be verified as free, so a
seek, latency, and a three page transfer to read labels is
performed (1). Assuming the pages are really free, then the
labels on the header are written (2). The time for the write
starts from the end of (1) and is the time of a disk
revolution less the time for a three page transfer, and it
takes two transfer times. The two sectors are the first two
verified in (1) and they have just gone past the disk head.
Finally, write the label for the data sector (3).

This model was validated by estimating and measuring
performance of CFS, 4.3 BSD UNIX, and two types of file
servers. For the simple operations benchmarked, the model
almost always predicted performance to within five percent
of measured performance.

Many alternatives were examined using the model.
The poorer alternatives were quickly discarded. The model
allowed estimation of the effects of logging, group commit,
redundancy, and central placement of certain files.

A problem with this model is that it ignores CPU time.
As a result, the design selected was very stingy with disk
I/O's, but the CPU was sometimes a slight bottleneck. The
Dorado is a high performance workstation with somewhat
slow, older technology disks. Cedar is a system that uses
lightweight processes, single virtual memory, low overhead
monitors, and is quite efficient in the use of the CPU.
Faster CPU's such as the Dragon will be common in
workstations as will slower disks (e.g., optical disks). The
combination of these factors led the author to ignore the
CPU in the modeling, although this may not be a proper
assumption for all environments.

7. Performance

CFS and FSD were benchmarked. Table 2 shows the
timing and speed up of some common operations. All
creates, opens, and deletes are for different files in the same
directory. Note that the "read page" time is identical in
both systems: the disk hardware is the same, so a simple

160

file read takes the same amount of time, once the file is
open. Typically, programs that are file system intensive
have improvements from 25 to 50% in running time, but
some operations have improved by a factor of 5 or even
100. Table 3 compares the disk l/O's of CFS and FSD.
The MakeDo program used as a benchmark is typical of
clients that intensively use the file system. "Crash
recovery" is the time it takes to recover from a major crash
on a moderately full 300 megabyte file system.

CFS FSD Speed up
Small create 264 70 3.77
Large create 7674 2730 2.81
Open 51.2 11.7 4.38
Open + Read 68.5 35.4 1.94
Small delete 214 15 14.5
Large delete 2692 118 22.8
Read page 41 41 1.0
Crash recovery 3600+ sec 25 sec 100+

Table 2. CFS to FSD Performance Measured in Wall
Clock (times in msec)

CFS FSD Ratio
100 small creates 874 149 5.87
list 100 files 146 3 48.7
read 100 small files 262 101 2.69
MakeDo 1975 1299 1.52

Table 3. CFS to FSD Performance Measured in Disk I/O's

Table 4 attempts to compare FSD and a 4.3 BSD
UNIX system running on a VAX-11/785. The "time"
command measured the number of disk I/O's for the 4.3
BSD UNIX file system. Note that 4.3 BSD does not double
write the directories or the inodes, so it is doing less work
for a create than FSD. Table 5 compares the CPU and disk
bandwidths that can be delivered by 4.2 BSD (taken from
[McKu84]) and the same values for FSD. One further
point of comparison is crash recovery. PARC's
VAX-11/785 recovers in about seven minutes (using fsck)
while FSD takes 1 to 25 seconds. Both systems have 300
megabyte file systems that are moderately full.

FSD 4.3 BSD Ratio
100 small creates 149 308 2.07
list 100 files 3 9 3
read 100 small files 101 106 1.05

Table 4. FSD and 4.3 BSD Performance Measured in Disk
I/O's

FSD 4.2 BSD
% CPU % Bandwidth % CPU % Bandwidth

read 27 79 54 47
write 28 80 95 47

Table 5. FSD and 4.2 BSD Performance Measured in
Percent of CPU and Disk Bandwidth

The implementors of CFS knew how to build a faster

system, but their goals were to investigate other ideas.
Hence, the comparisons in Tables 2 and 3 are somewhat
exaggerated. Table 4 shows that creates in FSD use about
half of the I/O's used by 4.3 BSD. lnodes in 4.3 BSD are
located on the same cylinder group as their directory (when
possible). A disk read fetches several inodes. The
benchmark favors 4.3 BSD since all the files were in the
same directory. Hence, the disk traffic for inodes is fairly
small for listing and reading 100 files.

8. Conclusion

FSD meets its design goals. It is robust, yet it does not
use labels. It is high performance, rarely doing unneeded
disk I/O's. In operations on the structure of the file system
(open, delete, extend, contract, and lis0, it rarely does any
disk I/O's; it is mostly CPU bound. It has fast recovery.

In addition, it has four atypical aspects. First, it was
designed using a performance model that captures most of
the timing characteristics of disks. Second, it uses log-based
recovery. Third, group commit is used to decrease disk
traffic. The combination of these last two allows for
delayed write of many pages, so the I/O to many hot spots
can be reduced. Finally, the system performs double writes
of key system structures. The performance penalty for
these writes is not large, due to the decrease in traffic from
logging and group commit.

Workstation file systems can be built using some
techniques from database systems. Although these
techniques may not be cost-effective for the data of a file
system, they are effective for the metadata. These systems
can be robust, have high performance, and recover rapidly
from a crash.

Acknowledgments

The comments from the program committee and
referees helped the author to improve the content and
presentation of this paper. Particular thanks go to Michael
Schroeder. Carl Hauser provided valuable assistance in the
design of the log file format. Roger Needham, Carl Hauser,
Jules Bloomenthal, and Douglas Terry provided valuable
comments on this paper. Subhana Menis provided her
usual excellent editorial assistance.

The principal original authors of the File and FS
packages were Andrew Birrell and Michael Schroeder. It
was comparatively easy to make the modifications outlined
in this paper due to way they wrote these packages.

References

[Bach86] Bach, M.J. The Design of the UNIX TM Operating System.
Prentice-HalL Englewood Cliffs, 1986.

[Brow85] Brown. M.. Kolling, K.. and Taft. E, "'The Alpine File System," in
ACM Transactions on Computer Systems Vol. 3, No. 4 (November
1985), 261-293.

[DeWi84] DeWitt. D, J.. Katz. R. H., Olken, F.. Shapiro. L. D.. Stonebraker,
M. R.. and Wood. D. "Implementation Techniques for Main Memory

161

Database Systems," Proceedings of SIGMOD "84, June 1984. 1-8: also
appears in SIGMOD Record Vol. 14, No. 2.

[Gray79] Gray, J. "Notes on Data Base Operating Systems," in Operating
Systems, An Advanced Course. Springer-Verlag 1979.

[Lamp79a] Lampson, B. W., and Sproull, R. F. "An Open System for a
Single-User Machine," Proceedings of the Seventh Symposium on
Operating Systems Principles, Dec. 1979, 98-105.

[Lamp79b] Lampson, B. W., and Sturgis, H. E. "'Crash Recovery in a
Distributed Data Storage System," Xerox PARC CSL unpublished
working paper, Palo Alto, CA, 1979.

[Lamp81] Lampson, B., and Pier, K.: Lampson, B., McDaniel, G., and
Ornstein, S.; Clark, D., Lampson. B., and Pier, K. The Dorado: A High
Performance Personal Computer. Three Papers, Xerox PARC Report
CSL-81-1, 1981.

[McCr84] McCreighL E. "The Dragon Computer System: An Early
Overview," in Proceedings of the NATO Advanced Study Institute on
MicroarehitectureofVLSIComputers; Urbino, Italy, July 1984.

[McKu84] McKusick. M. K., Joy, W. N., Leffier, S. J., and Fahry, R. S. A
Fast File System for UNIX," in ACM Transactions on Computer
System~ VoL 2, No. 3 (August 1984), 181-197.

[Metc76] Metcalfe, R. M., and Boggs, D. R, "'Ethernet: Distributed Packet
Switching for Local Computer Networks," Communications of the
ACM. Vol, 19, No. 7 (July 1976), 395-404.

[Need87] Needham, R. M. Private communication.
[Rede80] Redell, D., Dalai, Y., Horsley, T., Lauer, H., Lynch, W., McJones,

P,, Murray, H., and Purcell, S. "Pilot: An Operating System for a
Personal Computer." CACM, Vol. 23, No. 2 (Feb. 1980), 81-92.

[Ritc78] Ritchie, D. M., and Thompson, K. "The UNIX Time-sharing
System." Bell System Technical Journal Vol. 57, No. 6 (July-Aug.
1978), 1905-1930.

[Schm82] Schmidt, E. Controlling Large Software Development in a
Distributed Environment, Pi:.D. Thesis, U.C. Berkeley 1982; also
available as Xerox PARC Report CSL-82-7, 1982,

[Schr85] Schroeder, M. D., Gifford, D. K., and Needham, R, M. "A
Caching File System for a Programmer's Workstation," Proceedings of
the Tenth Symposium on Operating Systems Principles, Dec. 1985, 25-34.

[Stur80] Sturgis, H., Mitchell, J., and Israel, J. "Issues in the Design and Use
of a Distributed File System," Operating Systems Review, Vol. 14, No. 3
(July 1980~, 55-69.

[Swin86] Swinehart. D., Zellweger, P., Beach, R., and Hagmann, R. "A
Structural View of the Cedar Programming Environment," in ACM
Transactions on Programming Languages and Systemx Vol. 8, No. 2
(October 1986), 419-490: also available as Xerox PARC Report
CSL-86-1,1986.

[Thac79] Thacker, C., McCreight, E., Lampson, B.. Sproull, R., and Boggs,
D. Alto: A Personal Computer. Xerox PARC Report CSL-79-11,1979.

162

