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Abstract: The workstation file system for the Cedar 
programming environment was modified to improve its 
robustness and performance. Previously, the file system 
used hardware-provided labels on disk blocks to increase 
robustness against hardware and software errors. The new 
system does not require hardware disk labels, yet is more 
robust than the old system. Recovery is rapid after a crash. 
The performance of  operations on file system metadata, 
e.g., file creation or open, is greatly improved. 

The new file system has two features that make it 
atypical. The system uses a log, as do most database 
systems, to recover metadata about the file system. To gain 
performance, it uses group commit, a concept derived from 
high performance database systems. The design of  the 
system used a simple, yet detailed and accurate, analytical 
model to choose between several design alternatives in 
order to provide good disk performance. 

1. Introduction 

Workstation file systems ought to provide good 
performance, rapid crash recovery, and robustness. This 
paper will discuss four implementation approaches used to 
achieve these goals in the reimplemented Cedar 
workstation file system: 

1. log-based recovery for metadata, such as the file 
name table, 

2. use of  group commit to avoid some disk writes, 

3. a design based on a simple performance model 
that captures the timing characteristics of  disks, 
and 

4. techniques (e.g., writing key system data in two 
places) to increase the robustness of  the system. 
These techniques are well known, but they were 
implemented at little performance cost because of  
the use of  the log and group commit. 

PARC has a history of building file systems that are 
quite robust. Cedar [Swin86] is the programming 
environment in use at Xerox PARC/CSL. To be accepted 
by the Cedar users, the new file system had to be at least as 
robust as the existing system. The new file system is part of  
the Cedar release of  March 1987, which runs on present 
hardware. 

File systems have been studied extensively. For 
example, McKusick et al. reported on their improvements 
to the performance of  the UNIX ~ file system [McKu84]. 
The work reported here has been done in the tradition of  
the Xerox workstation file systems: the Alto file system 
[Lamp79a], the Pilot file system [Rede80], and the Cedar 
file system [Schr85]. 

What distinguishes this work from other file systems is 
that it incorporates some ideas from database systems. 
Logging is commonly used in these systems; see [Gray79] 
for a discussion of  logging. Group commit is part of  the 
lore of  database systems: a reference to it is in [DeWi84]. 

2. History, Terminology and Background 

Cedar currently runs on the "D-machine" architecture, 
exemplified by the Dorado [Lamp81] and Dandelion 
computers. These D-machines use the Trident disk 
interface that permits an implementation of  "labels" for 
every disk sector (see below for a discussion of labels). A 
new VLSI multiprocessor workstation, the Dragon 
[McCr84], is under development and will conform to some 
standard I /O interface that will not support labels. Thus, to 
port the Cedar operating system to the Dragon, the existing 
file system required modification. This provided an 
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opportunity to improve the performance and robustness of  
the file system. 

One of  the features of  the Alto [Thac79] and its 
successors has been their robust file system. A robust 
system is one that continues to operate (nearly) correctly in 
the presence of  some class of  errors. These file systems are 
robust against single page disk errors and memory smashes. 

In the Trident disk interface, each sector has an 
additional field, the label field, usually not found in other 
interfaces. PARC file systems for these disks use the label 
to mark each sector with information identifying the sector. 
In normal operation, before a sector's data is read or 
written, the label is verified against a label computed by the 
file system. If revolutions are not to be dropped, this check 
must be performed in microcode. The addition of  the label 
field makes it possible to detect, in hardware and 
microcode, errors such as wild writes. File allocation, 
extension, contraction, and deletion operations write the 
labels. Also, it is possible to scavenge the file system; by 
reading the labels and interpreting some of  the disk sectors, 
file system structural information, such as the free page 
map and the file name table, can be reconstructed. 

The Cedar File Package and File System, FS, together 
implement the abstraction of  a named file [Schr85]. A file 
is a sequence of  pages, logically numbered beginning with 
zero. The File Package is concerned with allocating and 
deleting flies, opening them, reading and writing file pages, 
and keeping track of  free pages. It specifically does not 
provide file names. This function is performed by FS. FS 
keeps the names of  all the files in its file name table, which 
might be called a directory or catalog in other systems. For 
the rest of  this paper we will call the previous version of  the 
file system CFS (as in [Schr85]), and call the 
reimplementation FSD (FS for Dragon). 

In CFS, a file has two kinds of  sectors: header sectors 
and data sectors. Header sectors contain file properties (e.g., 
the file's name, length and create date) and a run table 
describing the extents of  the file. The header sectors serve 
about the same purpose as the inodes do in the UNIX file 
system [Bach86], but have a different implementation. 
Data sectors store the contents of  the file. 

The Cedar File Package keeps a bit vector as a hint for 
which disk pages are free. This is called the Volume 
Allocation Map (VAM). There are no invariants associated 
with the VAM. Free pages may be lost and file creation 
may be somewhat slow, but these are judged to be 
acceptable performance problems and do not affect the 
integrity of  the system. 

3. Requirements for FSD 

Five prime requirements for the file system are 
relevant here. Other requirements that are more system 
specific willnot be covered in this paper. 

First, the system should be robust against a hardware 
sector error. An error on any sector on the disk should only 
affect the file that contains that sector. The failure model 

allows for one or two consecutive sectors to fail, but longer 
contiguous failures are considered to be a massive failure 
from which complete recovery may not be possible. A flaw 
on the disk or a failed write usually damages at most one 
sector, but occasionally two contiguous sectors are 
damaged. More stringent requirements (e.g., loss of  a 
whole track) can be met within the framework of  the design 
presented below, but it would complicate the algorithms 
and have a minor performance impact. Loss of  any part of  
the file name table should never occur due to a single sector 
failure. Massive failures (e.g., a head crash) are non- 
recoverable, except from backup. Mirrored hardware could 
be used to guard against massive failures [Lamp79b]. 

Second, the file system should be high performance. It 
must be designed so that the normal cases of  read, write, 
create, and delete operate near "hardware speed." 

Third, it should be robust against some software errors. 
FSD protects itself against two types of  errors: memory 
smashes produced by other software and some classes of  
internal bugs. 

Fourth, it should have fast recovery. Loss o f  a sector 
should not force a time consuming operation such as 
scavenge, which scans the disk and rebuilds the file name 
table. This is particularly critical as disk capacity continues 
to grow. 

Finally, the system should use commercially available 
disk hardware. A new, label-free design is required. 

4. Design Overview 
CFS and FSD differ in the location and contents of  

their disk resident data structures. Table i shows a slightly 
simplified diagram of  the location of  file system metadata. 

CFS FSD 
File Name Table File Name Table 

text name text name 
version version 
keep keep 
uid uid 
header page 0 disk address run table 

byte size 
Headers create time 

run table 
byte size Leaders 
keep uid 
create time preamble of run table 
version checksum of run table 
text name 

Labels 
uid 
page number 
page type (header, free, data) 

Table 1. Disk Data Structures for Local Files in CFS and 
FSD 
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There are three types of  file name table entries in CFS and 
FSD: local files, symbolic links to remote files, and cached 
copies of  remote files. The table only compares local files. 
This is sufficient to give a sense of  the differences and 
reduces complexity in the table. 

CFS splits the naming, property, and other 
information about files between three disk entities: the file 
name table, header sectors for files, and labels for every 
disk sector. To open a file from its name, the name is 
looked up in the file name table. The unique identifier 
(uid) and the "header page 0 disk address" are used to 
compute a label for the header of  the file. The page at the 
disk address is read to get the file header. This gives CFS 
the run table and all the other properties for the file. A bug 
in the file system will often show up as an error in 
comparing the computed label with the disk label. 

Note that most of  the data is replicated or can be 
recomputed. For example, the "text name" of  a file is 
stored both in the file name table and the header for the 
file. Also, the run table can be recomputed by reading all 
of  the labels. 

CFS creates a one byte file by finding three free pages 
from the VAM, reading their labels to check that they are 
really free, writing the labels to claim them for the file, 
writing the header, updating the file name table, writing the 
byte, and rewriting the header. Note that this is (at least) 
six I/O's. 

FSD moves all the header information from the file 
headers directly into the file name table. While CFS kept 
most critical information in two places, FSD keeps all its 
information in the file name table. This improves the 
locality of  the file system. Redundancy is achieved in FSD 
by keeping two copies of  the file name table; in CFS 
redundancy was achieved by keeping different data 
structures. 

FSD also has a leader page for each file. This page is 
used only for software checking (except for three files 
during the boot sequence). It is not used for recovery. 

Changes to the file name table and leader pages are 
written to a log. The log is written such that there are two 
copies of  all log records. Logging makes atomic update 
easy, delays some updates, and reduces the number of  
writes necessary for an update. Although logging may not 
be a cost-effective technique for the data of  a file system, it 
is effective for the metadata [Need87]. 

Group commit batches a set of  updates together for a 
log write. The log is written (if necessary) every half 
second. Group commit reduces the number of writes to the 
log. 

FSD creates a one byte file by finding two free pages 
from the VAM, updating the file name table, and writing 
the leader and the data page. A file create typically does 
one I /O synchronously: the combination of  the write of  
the leader and data pages. The create also dirties some file 
name table pages that are asynchronously logged and 
eventually written back to the file name table. 

5. Design Discussion 

The design described here met the file system 
requirements, performed the best of  the designs considered 
(as predicted by the analysis), and scaled well to slow- 
seeking but high-transfer-rate disks. The principle design 
concept is locality on the disk. Information that is needed, 
generated, recovered, or retrieved together benefits from 
proximity on the disk. 

5.1 File name table 

The file name table maps a file name into a file. The 
file name tables in CFS and FSD are kept in a B-tree. The 
information about each file in CFS is split between the B- 
tree and the file header. In FSD, the run tables and file 
properties, formerly stored in the file header, are kept in the 
file name table. 

Keeping the name and property information together 
is desirable for operations over many files such as "list" and 
"open." There is no need for a disk read for the properties 
since they are already available in the file name table. The 
file name table is preallocated to sectors near the central 
cylinder of  the logical volume. This reduces disk head 
motion. 

The unique identifier and the file's run table can be 
stored directly in the file name table since all files have (at 
most) one name. If files could have more than one name, 
such as with the multiple hard links in the UNIX file 
system, this optimization would be more difficult. 

To improve robustness, the file name table is written 
twice: every page is written on two different sectors with 
independent failure modes. Due to the extensive buffering 
provided by the log (see below), the overhead for double 
writing is not excessive. When a page is read, both copies 
are read and checked. 

5.2 Leader pages 

Files in FSD consist of  a single leader page and the 
data pages. The leader page doesn't contain any 
information needed for operation, but provides an optional 
check for the proper operation of  the system. Leader pages 
and the file name table are different data structures that are 
mutually checking. Leader pages are a key element in the 
robustness of  FSD (see section 5.8, Robustness, below). 

5.3 Log-based recovery 

Atomic update of  metadata is a property required in 
file systems. However, CFS used a B-tree package that did 
not have atomic update. While complicated splits or joins 
were being done in the tree, the tree could be left in an 
inconsistent state by a crash. Consistency was reestablished 
by scavenging, although this was a slow operation (an hour 
or more on a 300 megabyte disk). Further, the name table 
pages spanned multiple disk pages and a partial write could 
corrupt a name table page. 

A lesson learned in building database systems is that 
performance can be gained and consistency achieved by 
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writing updates to a log on stable storage. Data spread over 
the disk can be logically and atomically updated with a 
single disk write to the log. Updates are applied to buffered 
copies of  pages, but the copies are not forced to disk - they 
are just written to the log. The writes of  the buffers may be 
delayed (once logged) in anticipation of  a further update to 
the page (a hot spot) or the writes may be done at a more 
convenient time. 

In comparison, some systems do synchronous writes 
for consistency (see [Bach86], sections 5.16.1 and 5.16.2, for 
a good discussion of  the UNIX file system.) Synchronous 
writes require that the writes be performed in a particular 
order before an operation can complete (e.g., a file create in 
UNIX writes the inode to disk before returning). 
Synchronous writes tend to do more writes than logging 
and the writes are not localized. Logs have been used 
previously for file servers. Alpine [Brow85] logs updates to 
the file name table and file contents, but not to the 
allocated page map. DFS [Stur80] used a variation of  
logging called intention lists. 

A log in FSD is used only for changes to the file name 
table and to the leader pages. It logs physical pages and is.a 
redo log [Gray79]. That is, it records images of  changed 
pages that must be (re)written if the system crashes. 
Logging allows atomic update of  the file name table and the 
leader pages. Like the file name table, the log is allocated 
to sectors near the central cylinder to minimize head 
motion. 

The log could also be used to record changes to the 
VAM and file data pages. The VAM is maintained in a 
volatile form (see section 5.5, Free Pages, below) so it does 
not have to be logged. VAM logging would greatly 
decrease worst case crash recovery time from about twenty 
five seconds to about two seconds. VAM logging was not 
done since it was a complicated modification, worse case 
recovery is rare, and recovery was fast enough anyway. 

In CFS and FSD, data hot spots are rare. Both systems 
support versions for files. Most files are written exactly 
once, Hence, the logging of  the data pages is not very 
attractive: logging data pages would come close to 
doubling the number of  pages written for file data. 

The log is kept as a circular disk file. New log records 
are appended to the log by synchronously writing the new 
record to the file. Since the file is circular, there are 
potential problems in overwriting data while it is still 
needed, and coordinating the writing of  file name table 
pages and leader pages. Database systems typically use 
complicated algorithms to make use of  almost all of  the log. 
FSD uses a simple algorithm. 

First consider just the file name table pages. FSD 
maintains a cache for pages of  the file name table. Updates 
are applied to pages in the cache and then logged. The log 
is divided into thirds. FSD records in the cache the identity 
of  the third where the page was last logged. When the 
current log write is about to enter a new third, there may be 
data logged in this new third that must be rewritten to disk. 
The only disk resident copy of  the data is in the log and it 

will be overwritten soon. Any pages logged in this new 
third, but not logged in a later third, are written to the file 
name table by the logging code. The pages to be written 
are discovered by scanning the cache looking for pages that 
were most recently written into this new third. The cache is 
maintained such that the "dirty but logged" pages are kept 
in the cache; the write of  the pages to the file name table on 
the disk is directly from the cache. 

Due to high locality in the file name table, the number 
of  name table pages normally written is nearly zero. It is 
usually the case that a dirty name table page will have been 
recorded in a newer third, and thus no write will be 
required. Leader pages are also logged. Leader pages for a 
file create are normally written by piggybacking the write 
on the next operation to the file thereby avoiding a write by 
the logging code. Otherwise, they are written during entry 
into the third where they were logged. The only times 
pages are written to the file name table are during entry 
into a new third and during crash recovery. This simple 
algorithm averages 5/6 ths of  the log in use. 

Log records that are nearly the size of  the log file call 
for drastic measures that will not be covered here, but 
which are handled in the system. A log entry that is longer 
than the log file will cause a crash, but the log is forced long 
before this should occur. 

Any system that keeps its permanent data on disk must 
be concerned with disk errors. The model of  disk errors 
used in FSD is that only one error will occur at a time and it 
will damage one or two consecutive sectors. With this 
failure model, multi-sector writes may be only partly done. 
When writing the last two pages, either both are transferred 
successfully, the last page is detectably damaged but the 
next to last is transferred successfully, or both pages are 
detectably damaged (note similarities with the weak atomic 
property in [Stur80]). Hence, it is only necessary to avoid 
writing replicated copies of  a page into adjacent sectors. No 
single disk write can damage both copies. 

With this in mind, the details of  the log format can be 
described. A pointer to the start of  the first valid record in 
the oldest third is kept in page zero (replicated in page two) 
of  the log. The pointer is updated whenever a new third of  
the log is entered, after the pages in the to-be-overwritten 
third are written to disk. Each log entry is comprised of  a 
header page, a blank page, a copy of  the header page, the 
data pages being logged, an end page, copies of  the data 
pages being logged, and a copy of  the end page. The same 
data is never written to adjacent pages. Failure of  the write 
at any point can be detected when the log is read by 
matching the start and end page copies. Single or double 
page errors can be corrected from the other copy. The end 
of the log is detected by reading a header page pair and 
checking log record numbers, boot count, end pages, and 
special "bit patterns in the header page. 

5.4 Group commit 

The system also implements a variant of  group commit 
[DeWi84]: a set of  updates are grouped together in one log 
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write to amortize the cost of  the log write disk I/O over 
several updates. Where databases group the updates of  
independent users, FSD groups some updates of  the 
workstation owner. FSD forces its log twice a second. This 
induces a certain degree of  uncertainty about when some 
modifications to the file system are permanent, but the 
uncertainty is only halfa second. Clients may force the log. 

In the event of  a crash, any workstation user must 
determine the state of  the system anyway. Loss of  up to a 
half a second is not significant since it is regained in 
increased performance of  a few seconds of  normal 
operations. The last-used-time for cached copies of  remote 
files is an excellent example of  data that does not require 
exact update. Although uncertainty cannot be tolerated in 
a database or a transaction system, it is already tolerated in 
workstations with existing file systems. 

The use of  group commit also helps with hot spots. 
Bulk updates are often done to the file name table 
[Schm82]. These updates are normally localized to a sub- 
directory, which fits on a few pages. These pages are 
rapidly dirtied by the bulk updates. By doing group 
commit, the log is consumed more slowly and written less 
often. Moreover, the name table itself is written 
infrequently. One benchmark measured the combination 
of  logging and group commit as reducing the number of  
I/O's for metadata by a factor of  2.98 during these bulk 
operations; the total reduction was a factor of  2.34 for all 
I/O's. These factors may be improved somewhat by using a 
bigger log and lengthening the time between commits. 

Log records vary in size depending on activity. 
Records have five pages of  overhead and write twice the 
data to be logged. An open of  a cached file from a file 
server changes the last-used-time in the file properties. If  
this were the only update during a group commit period, 
then it would be recorded as a one data page record. This is 
logged in seven 512 byte sectors. The longest log record 
observed is 83 sectors long. Under high load, a typical log 
record has 14 pages logged, for a log record size of  33 
sectors. 

5.5 Free pages 

The free page information is kept in a bitmap called 
the VAM. Updates to the VAM could be made by 
synchronous disk writes. FSD avoids all disk writes during 
normal operations by keeping the VAM in volatile 
memory. During a controlled shutdown and idle periods, 
the VAM is written to disk. During a boot, the VAM is 
read from disk if it has been properly saved. If not, it is 
reconstructed from the file name table. Since the file name 
table is a compact structure with a great deal of  locality, it 
can be processed quickly. The time to reconstruct the 
VAM on a Dorado with a 300 Megabyte file system is 
typically twenty seconds. 

One complication in maintaining free pages is that the 
pages are not really free until the delete-is committed. They 
cannot be allocated to a new file sineelhey might-then be 
written. Pages in deleted-files are kept in a shadow bitmap. 

When a commit occurs, the pages marked free in the 
shadow bitmap are marked free in the VAM. 

5.6 Page allocator 

The File Package in Cedar allocates pages in runs 
(often called extents). The allocator in CFS performed 
adequately, except that it tended to fragment the free space. 
Large free blocks of  space were broken up by small files. A 
large fraction of  files are small. A measurement of  one 
system shows 50% of files are less that 4,000 bytes but use 
only 8% of  the sectors. 

FSD partitions the disk into big and small file areas to 
curtail fragmentation. The areas are only hints: a big file 
may have pages in the little file area. This is similar to 
many memory allocators: dynamic storage is grown 
starting from small addresses, while the stack is grown from 
the end of  memory towards small addresses. 

This allocator should work very well in FSD. Most of  
the small files are cached copies of  files stored on file 
servers. The size of  these files are known when they are 
fetched and the sizes never change. New versions of  files 
may be cached, but old versions are immutable (except that 
they may be flushed). 

5.7 File open 

Opening a file does not usually require an I/O. The 
leader page is normally verified on the first access to a file 
by piggybacking its read with the access. The first data 
access is almost always to the first data page, and the leader 
page is the previous physical page on the disk. Hence, it 
usually costs only the transfer time for a page to read the 
leader page. 

5.8 Robustness 

Using different data structures and algorithms is a well 
known method to detect bugs: both CFS and FSD use this 
technique. Leader pages have detected many bugs in FSD. 
However, leader pages are not as effective as the headers 
and labels of  CFS. Labels checked nearly every file system 
I/O. In FSD, bugs in the page allocator, logging, or crash 
recovery cannot be detected when they occur. The bugs are 
detected later, but they are harder to track down and may 
have done damage to the file system. FSD keeps pages 
cached from the file name table as read-only except when 
they are being updated. This is to catch wild stores, but this 
has never occurred. 

CFS rarely took label errors that were due to incorrect 
software. The scavenge program did not read the labels to 
verify the run tables stored in the headers. Hence, the 
header and label redundancy was not fully exploited. The 
amount of  code that must  be correct to maintain minimal 
system consistency has been increased from about four 
pages to ten pages. From analyzing system failures and 
measuring the system, it was estimated that elimination of  

-the header and label redundancy would have few adverse 
effects. 

FSD when compared -to CFS is robust against six 
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additional types of  errors. First, multi-page B-tree updates 
were not atomic. Second, a partial write of  the file name 
table could produce an inconsistent page. Logging prevents 
both of  these. Note also that the log writes two copies of  all 
pages. Third, the file name table could have bad pages; it 
now is replicated. Fourth, the VAM can have disk errors; 
these are recovered by reconstructing the VAM. Finally, 
two kinds of  pages needed in booting could become bad; 
they are now replicated. 

5.9 Recovery 

Recovery is fast and easy. There are two types of  
recovery. First, the VAM can be reconstructed using the 
name table (see section 5.5, Free Pages, above). 

Second, the file name table and labels are recovered 
from the log. The log is a physical redo log and the 
algorithm to perform recovery is simple. Log records are 
read and the copies of  pages in the log are written to disk. 
Recovery rarely takes more than two seconds on the current 
hardware. 

Scavenge in CFS was infrequent but very time 
consuming. Users do not like their machines being 
unavailable for an hour or more. Although in principle the 
replication and recovery in CFS protects the file system, the 
lack of  locality of  the data structure makes recovery too 
expensive. 

6. Performance Analysis 

Why choose one design instead of  another? How 
much performance does a feature deliver? How much does 
replication cost? How do existing systems perform? One 
way to answer questions like these is to construct a model. 

The model used in the design of  FSD computes the 
expected average case times for typical file operations. 
These operations included create, delete, list, open (without 
data I/O), and recovery from a disk error. All models used 
caches for all disk resident data. The caches were assumed 
to hit if the information is small (e.g., in the VAM), and to 
hit except for the leaf nodes for large structures such as the 
file name table. Hits for leaf nodes were modeled by 
simple probability distributions. 

In the design of  file systems, it is common to use the 
estimated number of  I /O operations as the performance 
metric. Unfortunately, this metric does not capture the 
rotational and radial position of  the disk heads. In 
particular, lost revolutions, sector clustering by cylinder, 
read then immediate re-write of  sectors, and short seeks are 
not adequately modeled. 

Each design alternative for FSD was analyzed in terms 
of  its effect upon each operation. The numbers of  seeks, 
short seeks (a few cylinders), latencies (half a revolution), 
lost revolutions, and transfer time were estimated by 
analyzing and scripting the necessary operations. The 
scripts incorporated any known locality, both rotational and 
radial (e g., dropped revolutions and same cylinder seeks). 
It was assumed that there would be no interference in-using 

the disk. Estimates were made for both hitting in the file 
name table cache and for missing. 

The idea is quite simple. Based on the code or 
documentation, analyze the algorithm to find out where it 
will do I/O's. If an 1/O will be on the same (or nearby) 
cylinder or if the rotational position of  the disk is known, 
then take this rotational and radial position into account in 
computing the time for the I/O. Compute both the cache 
hit and cache miss cases, and compute a weighted average. 

By way of  explaining the script method, here is an 
example of  the first three entries in a script that creates a 
one sector file in CFS: 

1) Verify free pages: 1 seek, t latency, 3 page transfers 

2) Write header labels: (revolution - 3 page transfers), 2 page 

transfers 

3) Write data labels: revolution, 1 page transfer 

4)... 

The file needs three pages: two for the header and one 
for data. Free pages are found in the VAM without 
incurring an I/O. The pages have to be verified as free, so a 
seek, latency, and a three page transfer to read labels is 
performed (1). Assuming the pages are really free, then the 
labels on the header are written (2). The time for the write 
starts from the end of  (1) and is the time of  a disk 
revolution less the time for a three page transfer, and it 
takes two transfer times. The two sectors are the first two 
verified in (1) and they have just gone past the disk head. 
Finally, write the label for the data sector (3). 

This model was validated by estimating and measuring 
performance of  CFS, 4.3 BSD UNIX, and two types of  file 
servers. For the simple operations benchmarked, the model 
almost always predicted performance to within five percent 
of  measured performance. 

Many alternatives were examined using the model. 
The poorer alternatives were quickly discarded. The model 
allowed estimation of  the effects of  logging, group commit, 
redundancy, and central placement of  certain files. 

A problem with this model is that it ignores CPU time. 
As a result, the design selected was very stingy with disk 
I/O's, but the CPU was sometimes a slight bottleneck. The 
Dorado is a high performance workstation with somewhat 
slow, older technology disks. Cedar is a system that uses 
lightweight processes, single virtual memory, low overhead 
monitors, and is quite efficient in the use of  the CPU. 
Faster CPU's such as the Dragon will be common in 
workstations as will slower disks (e.g., optical disks). The 
combination of  these factors led the author to ignore the 
CPU in the modeling, although this may not be a proper 
assumption for all environments. 

7. Performance 

CFS and FSD were benchmarked. Table 2 shows the 
timing and speed up of  some common operations. All 
creates, opens, and deletes are for different files in the same 
directory. Note that the "read page" time is identical in 
both systems: the disk hardware is the same, so a simple 
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file read takes the same amount of time, once the file is 
open. Typically, programs that are file system intensive 
have improvements from 25 to 50% in running time, but 
some operations have improved by a factor of 5 or even 
100. Table 3 compares the disk l/O's of CFS and FSD. 
The MakeDo program used as a benchmark is typical of 
clients that intensively use the file system. "Crash 
recovery" is the time it takes to recover from a major crash 
on a moderately full 300 megabyte file system. 

CFS FSD Speed up 
Small create 264 70 3.77 
Large create 7674 2730 2.81 
Open 51.2 11.7 4.38 
Open + Read 68.5 35.4 1.94 
Small delete 214 15 14.5 
Large delete 2692 118 22.8 
Read page 41 41 1.0 
Crash recovery 3600+ sec 25 sec 100+ 

Table 2. CFS to FSD Performance Measured in Wall 
Clock (times in msec) 

CFS FSD Ratio 
100 small creates 874 149 5.87 
list 100 files 146 3 48.7 
read 100 small files 262 101 2.69 
MakeDo 1975 1299 1.52 

Table 3. CFS to FSD Performance Measured in Disk I/O's 

Table 4 attempts to compare FSD and a 4.3 BSD 
UNIX system running on a VAX-11/785. The "time" 
command measured the number of disk I/O's for the 4.3 
BSD UNIX file system. Note that 4.3 BSD does not double 
write the directories or the inodes, so it is doing less work 
for a create than FSD. Table 5 compares the CPU and disk 
bandwidths that can be delivered by 4.2 BSD (taken from 
[McKu84]) and the same values for FSD. One further 
point of comparison is crash recovery. PARC's 
VAX-11/785 recovers in about seven minutes (using fsck) 
while FSD takes 1 to 25 seconds. Both systems have 300 
megabyte file systems that are moderately full. 

FSD 4.3 BSD Ratio 
100 small creates 149 308 2.07 
list 100 files 3 9 3 
read 100 small files 101 106 1.05 

Table 4. FSD and 4.3 BSD Performance Measured in Disk 
I/O's 

FSD 4.2 BSD 
% CPU % Bandwidth % CPU % Bandwidth 

read 27 79 54 47 
write 28 80 95 47 

Table 5. FSD and 4.2 BSD Performance Measured in 
Percent of CPU and Disk Bandwidth 

The implementors of CFS knew how to build a faster 

system, but their goals were to investigate other ideas. 
Hence, the comparisons in Tables 2 and 3 are somewhat 
exaggerated. Table 4 shows that creates in FSD use about 
half of the I/O's used by 4.3 BSD. lnodes in 4.3 BSD are 
located on the same cylinder group as their directory (when 
possible). A disk read fetches several inodes. The 
benchmark favors 4.3 BSD since all the files were in the 
same directory. Hence, the disk traffic for inodes is fairly 
small for listing and reading 100 files. 

8. Conclusion 

FSD meets its design goals. It is robust, yet it does not 
use labels. It is high performance, rarely doing unneeded 
disk I/O's. In operations on the structure of the file system 
(open, delete, extend, contract, and lis0, it rarely does any 
disk I/O's; it is mostly CPU bound. It has fast recovery. 

In addition, it has four atypical aspects. First, it was 
designed using a performance model that captures most of 
the timing characteristics of disks. Second, it uses log-based 
recovery. Third, group commit is used to decrease disk 
traffic. The combination of these last two allows for 
delayed write of many pages, so the I/O to many hot spots 
can be reduced. Finally, the system performs double writes 
of key system structures. The performance penalty for 
these writes is not large, due to the decrease in traffic from 
logging and group commit. 

Workstation file systems can be built using some 
techniques from database systems. Although these 
techniques may not be cost-effective for the data of a file 
system, they are effective for the metadata. These systems 
can be robust, have high performance, and recover rapidly 
from a crash. 
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