
The Google File System

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung

Google∗

ABSTRACT
We have designed and implemented the Google File Sys-
tem, a scalable distributed file system for large distributed
data-intensive applications. It provides fault tolerance while
running on inexpensive commodity hardware, and it delivers
high aggregate performance to a large number of clients.
While sharing many of the same goals as previous dis-

tributed file systems, our design has been driven by obser-
vations of our application workloads and technological envi-
ronment, both current and anticipated, that reflect a marked
departure from some earlier file system assumptions. This
has led us to reexamine traditional choices and explore rad-
ically different design points.
The file system has successfully met our storage needs.

It is widely deployed within Google as the storage platform
for the generation and processing of data used by our ser-
vice as well as research and development efforts that require
large data sets. The largest cluster to date provides hun-
dreds of terabytes of storage across thousands of disks on
over a thousand machines, and it is concurrently accessed
by hundreds of clients.
In this paper, we present file system interface extensions

designed to support distributed applications, discuss many
aspects of our design, and report measurements from both
micro-benchmarks and real world use.

Categories and Subject Descriptors
D [4]: 3—Distributed file systems

General Terms
Design, reliability, performance, measurement

Keywords
Fault tolerance, scalability, data storage, clustered storage

∗The authors can be reached at the following addresses:
{sanjay,hgobioff,shuntak}@google.com.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’03, October 19–22, 2003, Bolton Landing, New York, USA.
Copyright 2003 ACM 1-58113-757-5/03/0010 ...$5.00.

1. INTRODUCTION
We have designed and implemented the Google File Sys-

tem (GFS) to meet the rapidly growing demands of Google’s
data processing needs. GFS shares many of the same goals
as previous distributed file systems such as performance,
scalability, reliability, and availability. However, its design
has been driven by key observations of our application work-
loads and technological environment, both current and an-
ticipated, that reflect a marked departure from some earlier
file system design assumptions. We have reexamined tradi-
tional choices and explored radically different points in the
design space.
First, component failures are the norm rather than the

exception. The file system consists of hundreds or even
thousands of storage machines built from inexpensive com-
modity parts and is accessed by a comparable number of
client machines. The quantity and quality of the compo-
nents virtually guarantee that some are not functional at
any given time and some will not recover from their cur-
rent failures. We have seen problems caused by application
bugs, operating system bugs, human errors, and the failures
of disks, memory, connectors, networking, and power sup-
plies. Therefore, constant monitoring, error detection, fault
tolerance, and automatic recovery must be integral to the
system.
Second, files are huge by traditional standards. Multi-GB

files are common. Each file typically contains many applica-
tion objects such as web documents. When we are regularly
working with fast growing data sets of many TBs comprising
billions of objects, it is unwieldy to manage billions of ap-
proximately KB-sized files even when the file system could
support it. As a result, design assumptions and parameters
such as I/O operation and block sizes have to be revisited.
Third, most files are mutated by appending new data

rather than overwriting existing data. Randomwrites within
a file are practically non-existent. Once written, the files
are only read, and often only sequentially. A variety of
data share these characteristics. Some may constitute large
repositories that data analysis programs scan through. Some
may be data streams continuously generated by running ap-
plications. Some may be archival data. Some may be in-
termediate results produced on one machine and processed
on another, whether simultaneously or later in time. Given
this access pattern on huge files, appending becomes the fo-
cus of performance optimization and atomicity guarantees,
while caching data blocks in the client loses its appeal.
Fourth, co-designing the applications and the file system

API benefits the overall system by increasing our flexibility.

For example, we have relaxed GFS’s consistency model to
vastly simplify the file system without imposing an onerous
burden on the applications. We have also introduced an
atomic append operation so that multiple clients can append
concurrently to a file without extra synchronization between
them. These will be discussed in more details later in the
paper.
Multiple GFS clusters are currently deployed for different

purposes. The largest ones have over 1000 storage nodes,
over 300 TB of disk storage, and are heavily accessed by
hundreds of clients on distinct machines on a continuous
basis.

2. DESIGN OVERVIEW

2.1 Assumptions
In designing a file system for our needs, we have been

guided by assumptions that offer both challenges and op-
portunities. We alluded to some key observations earlier
and now lay out our assumptions in more details.

• The system is built from many inexpensive commodity
components that often fail. It must constantly monitor
itself and detect, tolerate, and recover promptly from
component failures on a routine basis.

• The system stores a modest number of large files. We
expect a few million files, each typically 100 MB or
larger in size. Multi-GB files are the common case
and should be managed efficiently. Small files must be
supported, but we need not optimize for them.

• The workloads primarily consist of two kinds of reads:
large streaming reads and small random reads. In
large streaming reads, individual operations typically
read hundreds of KBs, more commonly 1 MB or more.
Successive operations from the same client often read
through a contiguous region of a file. A small ran-
dom read typically reads a few KBs at some arbitrary
offset. Performance-conscious applications often batch
and sort their small reads to advance steadily through
the file rather than go back and forth.

• The workloads also have many large, sequential writes
that append data to files. Typical operation sizes are
similar to those for reads. Once written, files are sel-
dom modified again. Small writes at arbitrary posi-
tions in a file are supported but do not have to be
efficient.

• The system must efficiently implement well-defined se-
mantics for multiple clients that concurrently append
to the same file. Our files are often used as producer-
consumer queues or for many-way merging. Hundreds
of producers, running one per machine, will concur-
rently append to a file. Atomicity with minimal syn-
chronization overhead is essential. The file may be
read later, or a consumer may be reading through the
file simultaneously.

• High sustained bandwidth is more important than low
latency. Most of our target applications place a pre-
mium on processing data in bulk at a high rate, while
few have stringent response time requirements for an
individual read or write.

2.2 Interface
GFS provides a familiar file system interface, though it

does not implement a standard API such as POSIX. Files are
organized hierarchically in directories and identified by path-
names. We support the usual operations to create, delete,
open, close, read, and write files.
Moreover, GFS has snapshot and record append opera-

tions. Snapshot creates a copy of a file or a directory tree
at low cost. Record append allows multiple clients to ap-
pend data to the same file concurrently while guaranteeing
the atomicity of each individual client’s append. It is use-
ful for implementing multi-way merge results and producer-
consumer queues that many clients can simultaneously ap-
pend to without additional locking. We have found these
types of files to be invaluable in building large distributed
applications. Snapshot and record append are discussed fur-
ther in Sections 3.4 and 3.3 respectively.

2.3 Architecture
A GFS cluster consists of a single master and multiple

chunkservers and is accessed by multiple clients, as shown
in Figure 1. Each of these is typically a commodity Linux
machine running a user-level server process. It is easy to run
both a chunkserver and a client on the same machine, as long
as machine resources permit and the lower reliability caused
by running possibly flaky application code is acceptable.
Files are divided into fixed-size chunks. Each chunk is

identified by an immutable and globally unique 64 bit chunk
handle assigned by the master at the time of chunk creation.
Chunkservers store chunks on local disks as Linux files and
read or write chunk data specified by a chunk handle and
byte range. For reliability, each chunk is replicated on multi-
ple chunkservers. By default, we store three replicas, though
users can designate different replication levels for different
regions of the file namespace.
The master maintains all file system metadata. This in-

cludes the namespace, access control information, the map-
ping from files to chunks, and the current locations of chunks.
It also controls system-wide activities such as chunk lease
management, garbage collection of orphaned chunks, and
chunk migration between chunkservers. The master peri-
odically communicates with each chunkserver in HeartBeat
messages to give it instructions and collect its state.
GFS client code linked into each application implements

the file system API and communicates with the master and
chunkservers to read or write data on behalf of the applica-
tion. Clients interact with the master for metadata opera-
tions, but all data-bearing communication goes directly to
the chunkservers. We do not provide the POSIX API and
therefore need not hook into the Linux vnode layer.
Neither the client nor the chunkserver caches file data.

Client caches offer little benefit because most applications
stream through huge files or have working sets too large
to be cached. Not having them simplifies the client and
the overall system by eliminating cache coherence issues.
(Clients do cache metadata, however.) Chunkservers need
not cache file data because chunks are stored as local files
and so Linux’s buffer cache already keeps frequently accessed
data in memory.

2.4 Single Master
Having a single master vastly simplifies our design and

enables the master to make sophisticated chunk placement

Legend:

Data messages
Control messages

Application
(file name, chunk index)

(chunk handle,
chunk locations)

GFS master

File namespace

/foo/bar

Instructions to chunkserver

Chunkserver state

GFS chunkserverGFS chunkserver
(chunk handle, byte range)

chunk data

chunk 2ef0

Linux file system Linux file system

GFS client

Figure 1: GFS Architecture

and replication decisions using global knowledge. However,
we must minimize its involvement in reads and writes so
that it does not become a bottleneck. Clients never read
and write file data through the master. Instead, a client asks
the master which chunkservers it should contact. It caches
this information for a limited time and interacts with the
chunkservers directly for many subsequent operations.
Let us explain the interactions for a simple read with refer-

ence to Figure 1. First, using the fixed chunk size, the client
translates the file name and byte offset specified by the ap-
plication into a chunk index within the file. Then, it sends
the master a request containing the file name and chunk
index. The master replies with the corresponding chunk
handle and locations of the replicas. The client caches this
information using the file name and chunk index as the key.
The client then sends a request to one of the replicas,

most likely the closest one. The request specifies the chunk
handle and a byte range within that chunk. Further reads
of the same chunk require no more client-master interaction
until the cached information expires or the file is reopened.
In fact, the client typically asks for multiple chunks in the
same request and the master can also include the informa-
tion for chunks immediately following those requested. This
extra information sidesteps several future client-master in-
teractions at practically no extra cost.

2.5 Chunk Size
Chunk size is one of the key design parameters. We have

chosen 64 MB, which is much larger than typical file sys-
tem block sizes. Each chunk replica is stored as a plain
Linux file on a chunkserver and is extended only as needed.
Lazy space allocation avoids wasting space due to internal
fragmentation, perhaps the greatest objection against such
a large chunk size.
A large chunk size offers several important advantages.

First, it reduces clients’ need to interact with the master
because reads and writes on the same chunk require only
one initial request to the master for chunk location informa-
tion. The reduction is especially significant for our work-
loads because applications mostly read and write large files
sequentially. Even for small random reads, the client can
comfortably cache all the chunk location information for a
multi-TB working set. Second, since on a large chunk, a
client is more likely to perform many operations on a given
chunk, it can reduce network overhead by keeping a persis-

tent TCP connection to the chunkserver over an extended
period of time. Third, it reduces the size of the metadata
stored on the master. This allows us to keep the metadata
in memory, which in turn brings other advantages that we
will discuss in Section 2.6.1.
On the other hand, a large chunk size, even with lazy space

allocation, has its disadvantages. A small file consists of a
small number of chunks, perhaps just one. The chunkservers
storing those chunks may become hot spots if many clients
are accessing the same file. In practice, hot spots have not
been a major issue because our applications mostly read
large multi-chunk files sequentially.
However, hot spots did develop when GFS was first used

by a batch-queue system: an executable was written to GFS
as a single-chunk file and then started on hundreds of ma-
chines at the same time. The few chunkservers storing this
executable were overloaded by hundreds of simultaneous re-
quests. We fixed this problem by storing such executables
with a higher replication factor and by making the batch-
queue system stagger application start times. A potential
long-term solution is to allow clients to read data from other
clients in such situations.

2.6 Metadata
The master stores three major types of metadata: the file

and chunk namespaces, the mapping from files to chunks,
and the locations of each chunk’s replicas. All metadata is
kept in the master’s memory. The first two types (names-
paces and file-to-chunk mapping) are also kept persistent by
logging mutations to an operation log stored on the mas-
ter’s local disk and replicated on remote machines. Using
a log allows us to update the master state simply, reliably,
and without risking inconsistencies in the event of a master
crash. The master does not store chunk location informa-
tion persistently. Instead, it asks each chunkserver about its
chunks at master startup and whenever a chunkserver joins
the cluster.

2.6.1 In-Memory Data Structures
Since metadata is stored in memory, master operations are

fast. Furthermore, it is easy and efficient for the master to
periodically scan through its entire state in the background.
This periodic scanning is used to implement chunk garbage
collection, re-replication in the presence of chunkserver fail-
ures, and chunk migration to balance load and disk space

usage across chunkservers. Sections 4.3 and 4.4 will discuss
these activities further.
One potential concern for this memory-only approach is

that the number of chunks and hence the capacity of the
whole system is limited by how much memory the master
has. This is not a serious limitation in practice. The mas-
ter maintains less than 64 bytes of metadata for each 64 MB
chunk. Most chunks are full because most files contain many
chunks, only the last of which may be partially filled. Sim-
ilarly, the file namespace data typically requires less then
64 bytes per file because it stores file names compactly us-
ing prefix compression.
If necessary to support even larger file systems, the cost

of adding extra memory to the master is a small price to pay
for the simplicity, reliability, performance, and flexibility we
gain by storing the metadata in memory.

2.6.2 Chunk Locations
The master does not keep a persistent record of which

chunkservers have a replica of a given chunk. It simply polls
chunkservers for that information at startup. The master
can keep itself up-to-date thereafter because it controls all
chunk placement and monitors chunkserver status with reg-
ular HeartBeat messages.
We initially attempted to keep chunk location information

persistently at the master, but we decided that it was much
simpler to request the data from chunkservers at startup,
and periodically thereafter. This eliminated the problem of
keeping the master and chunkservers in sync as chunkservers
join and leave the cluster, change names, fail, restart, and
so on. In a cluster with hundreds of servers, these events
happen all too often.
Another way to understand this design decision is to real-

ize that a chunkserver has the final word over what chunks
it does or does not have on its own disks. There is no point
in trying to maintain a consistent view of this information
on the master because errors on a chunkserver may cause
chunks to vanish spontaneously (e.g., a disk may go bad
and be disabled) or an operator may rename a chunkserver.

2.6.3 Operation Log
The operation log contains a historical record of critical

metadata changes. It is central to GFS. Not only is it the
only persistent record of metadata, but it also serves as a
logical time line that defines the order of concurrent op-
erations. Files and chunks, as well as their versions (see
Section 4.5), are all uniquely and eternally identified by the
logical times at which they were created.
Since the operation log is critical, we must store it reli-

ably and not make changes visible to clients until metadata
changes are made persistent. Otherwise, we effectively lose
the whole file system or recent client operations even if the
chunks themselves survive. Therefore, we replicate it on
multiple remote machines and respond to a client opera-
tion only after flushing the corresponding log record to disk
both locally and remotely. The master batches several log
records together before flushing thereby reducing the impact
of flushing and replication on overall system throughput.
The master recovers its file system state by replaying the

operation log. To minimize startup time, we must keep the
log small. The master checkpoints its state whenever the log
grows beyond a certain size so that it can recover by loading
the latest checkpoint from local disk and replaying only the

Write Record Append

Serial defined defined
success interspersed with
Concurrent consistent inconsistent
successes but undefined
Failure inconsistent

Table 1: File Region State After Mutation

limited number of log records after that. The checkpoint is
in a compact B-tree like form that can be directly mapped
into memory and used for namespace lookup without ex-
tra parsing. This further speeds up recovery and improves
availability.
Because building a checkpoint can take a while, the mas-

ter’s internal state is structured in such a way that a new
checkpoint can be created without delaying incoming muta-
tions. The master switches to a new log file and creates the
new checkpoint in a separate thread. The new checkpoint
includes all mutations before the switch. It can be created
in a minute or so for a cluster with a few million files. When
completed, it is written to disk both locally and remotely.
Recovery needs only the latest complete checkpoint and

subsequent log files. Older checkpoints and log files can
be freely deleted, though we keep a few around to guard
against catastrophes. A failure during checkpointing does
not affect correctness because the recovery code detects and
skips incomplete checkpoints.

2.7 Consistency Model
GFS has a relaxed consistency model that supports our

highly distributed applications well but remains relatively
simple and efficient to implement. We now discuss GFS’s
guarantees and what they mean to applications. We also
highlight how GFS maintains these guarantees but leave the
details to other parts of the paper.

2.7.1 Guarantees by GFS
File namespace mutations (e.g., file creation) are atomic.

They are handled exclusively by the master: namespace
locking guarantees atomicity and correctness (Section 4.1);
the master’s operation log defines a global total order of
these operations (Section 2.6.3).
The state of a file region after a data mutation depends

on the type of mutation, whether it succeeds or fails, and
whether there are concurrent mutations. Table 1 summa-
rizes the result. A file region is consistent if all clients will
always see the same data, regardless of which replicas they
read from. A region is defined after a file data mutation if it
is consistent and clients will see what the mutation writes in
its entirety. When a mutation succeeds without interference
from concurrent writers, the affected region is defined (and
by implication consistent): all clients will always see what
the mutation has written. Concurrent successful mutations
leave the region undefined but consistent: all clients see the
same data, but it may not reflect what any one mutation
has written. Typically, it consists of mingled fragments from
multiple mutations. A failed mutation makes the region in-
consistent (hence also undefined): different clients may see
different data at different times. We describe below how our
applications can distinguish defined regions from undefined

regions. The applications do not need to further distinguish
between different kinds of undefined regions.
Data mutations may be writes or record appends. A write

causes data to be written at an application-specified file
offset. A record append causes data (the “record”) to be
appended atomically at least once even in the presence of
concurrent mutations, but at an offset of GFS’s choosing
(Section 3.3). (In contrast, a “regular” append is merely a
write at an offset that the client believes to be the current
end of file.) The offset is returned to the client and marks
the beginning of a defined region that contains the record.
In addition, GFS may insert padding or record duplicates in
between. They occupy regions considered to be inconsistent
and are typically dwarfed by the amount of user data.
After a sequence of successful mutations, the mutated file

region is guaranteed to be defined and contain the data writ-
ten by the last mutation. GFS achieves this by (a) applying
mutations to a chunk in the same order on all its replicas
(Section 3.1), and (b) using chunk version numbers to detect
any replica that has become stale because it has missed mu-
tations while its chunkserver was down (Section 4.5). Stale
replicas will never be involved in a mutation or given to
clients asking the master for chunk locations. They are
garbage collected at the earliest opportunity.
Since clients cache chunk locations, they may read from a

stale replica before that information is refreshed. This win-
dow is limited by the cache entry’s timeout and the next
open of the file, which purges from the cache all chunk in-
formation for that file. Moreover, as most of our files are
append-only, a stale replica usually returns a premature
end of chunk rather than outdated data. When a reader
retries and contacts the master, it will immediately get cur-
rent chunk locations.
Long after a successful mutation, component failures can

of course still corrupt or destroy data. GFS identifies failed
chunkservers by regular handshakes between master and all
chunkservers and detects data corruption by checksumming
(Section 5.2). Once a problem surfaces, the data is restored
from valid replicas as soon as possible (Section 4.3). A chunk
is lost irreversibly only if all its replicas are lost before GFS
can react, typically within minutes. Even in this case, it be-
comes unavailable, not corrupted: applications receive clear
errors rather than corrupt data.

2.7.2 Implications for Applications
GFS applications can accommodate the relaxed consis-

tency model with a few simple techniques already needed for
other purposes: relying on appends rather than overwrites,
checkpointing, and writing self-validating, self-identifying
records.
Practically all our applications mutate files by appending

rather than overwriting. In one typical use, a writer gener-
ates a file from beginning to end. It atomically renames the
file to a permanent name after writing all the data, or pe-
riodically checkpoints how much has been successfully writ-
ten. Checkpoints may also include application-level check-
sums. Readers verify and process only the file region up
to the last checkpoint, which is known to be in the defined
state. Regardless of consistency and concurrency issues, this
approach has served us well. Appending is far more effi-
cient and more resilient to application failures than random
writes. Checkpointing allows writers to restart incremen-
tally and keeps readers from processing successfully written

file data that is still incomplete from the application’s per-
spective.
In the other typical use, many writers concurrently ap-

pend to a file for merged results or as a producer-consumer
queue. Record append’s append-at-least-once semantics pre-
serves each writer’s output. Readers deal with the occa-
sional padding and duplicates as follows. Each record pre-
pared by the writer contains extra information like check-
sums so that its validity can be verified. A reader can
identify and discard extra padding and record fragments
using the checksums. If it cannot tolerate the occasional
duplicates (e.g., if they would trigger non-idempotent op-
erations), it can filter them out using unique identifiers in
the records, which are often needed anyway to name corre-
sponding application entities such as web documents. These
functionalities for record I/O (except duplicate removal) are
in library code shared by our applications and applicable to
other file interface implementations at Google. With that,
the same sequence of records, plus rare duplicates, is always
delivered to the record reader.

3. SYSTEM INTERACTIONS
We designed the system to minimize the master’s involve-

ment in all operations. With that background, we now de-
scribe how the client, master, and chunkservers interact to
implement data mutations, atomic record append, and snap-
shot.

3.1 Leases and Mutation Order
A mutation is an operation that changes the contents or

metadata of a chunk such as a write or an append opera-
tion. Each mutation is performed at all the chunk’s replicas.
We use leases to maintain a consistent mutation order across
replicas. The master grants a chunk lease to one of the repli-
cas, which we call the primary. The primary picks a serial
order for all mutations to the chunk. All replicas follow this
order when applying mutations. Thus, the global mutation
order is defined first by the lease grant order chosen by the
master, and within a lease by the serial numbers assigned
by the primary.
The lease mechanism is designed to minimize manage-

ment overhead at the master. A lease has an initial timeout
of 60 seconds. However, as long as the chunk is being mu-
tated, the primary can request and typically receive exten-
sions from the master indefinitely. These extension requests
and grants are piggybacked on the HeartBeat messages reg-
ularly exchanged between the master and all chunkservers.
The master may sometimes try to revoke a lease before it
expires (e.g., when the master wants to disable mutations
on a file that is being renamed). Even if the master loses
communication with a primary, it can safely grant a new
lease to another replica after the old lease expires.
In Figure 2, we illustrate this process by following the

control flow of a write through these numbered steps.

1. The client asks the master which chunkserver holds
the current lease for the chunk and the locations of
the other replicas. If no one has a lease, the master
grants one to a replica it chooses (not shown).

2. The master replies with the identity of the primary and
the locations of the other (secondary) replicas. The
client caches this data for future mutations. It needs
to contact the master again only when the primary

Primary
Replica

Secondary
Replica B

Secondary
Replica A

Master

Legend:

Control

Data

3

Client
2

step 14

5

6

6

7

Figure 2: Write Control and Data Flow

becomes unreachable or replies that it no longer holds
a lease.

3. The client pushes the data to all the replicas. A client
can do so in any order. Each chunkserver will store
the data in an internal LRU buffer cache until the
data is used or aged out. By decoupling the data flow
from the control flow, we can improve performance by
scheduling the expensive data flow based on the net-
work topology regardless of which chunkserver is the
primary. Section 3.2 discusses this further.

4. Once all the replicas have acknowledged receiving the
data, the client sends a write request to the primary.
The request identifies the data pushed earlier to all of
the replicas. The primary assigns consecutive serial
numbers to all the mutations it receives, possibly from
multiple clients, which provides the necessary serial-
ization. It applies the mutation to its own local state
in serial number order.

5. The primary forwards the write request to all sec-
ondary replicas. Each secondary replica applies mu-
tations in the same serial number order assigned by
the primary.

6. The secondaries all reply to the primary indicating
that they have completed the operation.

7. The primary replies to the client. Any errors encoun-
tered at any of the replicas are reported to the client.
In case of errors, the write may have succeeded at the
primary and an arbitrary subset of the secondary repli-
cas. (If it had failed at the primary, it would not
have been assigned a serial number and forwarded.)
The client request is considered to have failed, and the
modified region is left in an inconsistent state. Our
client code handles such errors by retrying the failed
mutation. It will make a few attempts at steps (3)
through (7) before falling back to a retry from the be-
ginning of the write.

If a write by the application is large or straddles a chunk
boundary, GFS client code breaks it down into multiple
write operations. They all follow the control flow described
above but may be interleaved with and overwritten by con-
current operations from other clients. Therefore, the shared

file region may end up containing fragments from different
clients, although the replicas will be identical because the in-
dividual operations are completed successfully in the same
order on all replicas. This leaves the file region in consistent
but undefined state as noted in Section 2.7.

3.2 Data Flow
We decouple the flow of data from the flow of control to

use the network efficiently. While control flows from the
client to the primary and then to all secondaries, data is
pushed linearly along a carefully picked chain of chunkservers
in a pipelined fashion. Our goals are to fully utilize each
machine’s network bandwidth, avoid network bottlenecks
and high-latency links, and minimize the latency to push
through all the data.
To fully utilize each machine’s network bandwidth, the

data is pushed linearly along a chain of chunkservers rather
than distributed in some other topology (e.g., tree). Thus,
each machine’s full outbound bandwidth is used to trans-
fer the data as fast as possible rather than divided among
multiple recipients.
To avoid network bottlenecks and high-latency links (e.g.,

inter-switch links are often both) as much as possible, each
machine forwards the data to the “closest” machine in the
network topology that has not received it. Suppose the
client is pushing data to chunkservers S1 through S4. It
sends the data to the closest chunkserver, say S1. S1 for-
wards it to the closest chunkserver S2 through S4 closest to
S1, say S2. Similarly, S2 forwards it to S3 or S4, whichever
is closer to S2, and so on. Our network topology is simple
enough that “distances” can be accurately estimated from
IP addresses.
Finally, we minimize latency by pipelining the data trans-

fer over TCP connections. Once a chunkserver receives some
data, it starts forwarding immediately. Pipelining is espe-
cially helpful to us because we use a switched network with
full-duplex links. Sending the data immediately does not
reduce the receive rate. Without network congestion, the
ideal elapsed time for transferring B bytes to R replicas is
B/T + RL where T is the network throughput and L is la-
tency to transfer bytes between two machines. Our network
links are typically 100 Mbps (T), and L is far below 1 ms.
Therefore, 1 MB can ideally be distributed in about 80 ms.

3.3 Atomic Record Appends
GFS provides an atomic append operation called record

append. In a traditional write, the client specifies the off-
set at which data is to be written. Concurrent writes to
the same region are not serializable: the region may end up
containing data fragments from multiple clients. In a record
append, however, the client specifies only the data. GFS
appends it to the file at least once atomically (i.e., as one
continuous sequence of bytes) at an offset of GFS’s choosing
and returns that offset to the client. This is similar to writ-
ing to a file opened in O APPEND mode in Unix without the
race conditions when multiple writers do so concurrently.
Record append is heavily used by our distributed applica-

tions in which many clients on different machines append
to the same file concurrently. Clients would need addi-
tional complicated and expensive synchronization, for ex-
ample through a distributed lock manager, if they do so
with traditional writes. In our workloads, such files often

serve as multiple-producer/single-consumer queues or con-
tain merged results from many different clients.
Record append is a kind of mutation and follows the con-

trol flow in Section 3.1 with only a little extra logic at the
primary. The client pushes the data to all replicas of the
last chunk of the file Then, it sends its request to the pri-
mary. The primary checks to see if appending the record
to the current chunk would cause the chunk to exceed the
maximum size (64 MB). If so, it pads the chunk to the max-
imum size, tells secondaries to do the same, and replies to
the client indicating that the operation should be retried
on the next chunk. (Record append is restricted to be at
most one-fourth of the maximum chunk size to keep worst-
case fragmentation at an acceptable level.) If the record
fits within the maximum size, which is the common case,
the primary appends the data to its replica, tells the secon-
daries to write the data at the exact offset where it has, and
finally replies success to the client.
If a record append fails at any replica, the client retries the

operation. As a result, replicas of the same chunk may con-
tain different data possibly including duplicates of the same
record in whole or in part. GFS does not guarantee that all
replicas are bytewise identical. It only guarantees that the
data is written at least once as an atomic unit. This prop-
erty follows readily from the simple observation that for the
operation to report success, the data must have been written
at the same offset on all replicas of some chunk. Further-
more, after this, all replicas are at least as long as the end
of record and therefore any future record will be assigned a
higher offset or a different chunk even if a different replica
later becomes the primary. In terms of our consistency guar-
antees, the regions in which successful record append opera-
tions have written their data are defined (hence consistent),
whereas intervening regions are inconsistent (hence unde-
fined). Our applications can deal with inconsistent regions
as we discussed in Section 2.7.2.

3.4 Snapshot
The snapshot operation makes a copy of a file or a direc-

tory tree (the “source”) almost instantaneously, while min-
imizing any interruptions of ongoing mutations. Our users
use it to quickly create branch copies of huge data sets (and
often copies of those copies, recursively), or to checkpoint
the current state before experimenting with changes that
can later be committed or rolled back easily.
Like AFS [5], we use standard copy-on-write techniques to

implement snapshots. When the master receives a snapshot
request, it first revokes any outstanding leases on the chunks
in the files it is about to snapshot. This ensures that any
subsequent writes to these chunks will require an interaction
with the master to find the lease holder. This will give the
master an opportunity to create a new copy of the chunk
first.
After the leases have been revoked or have expired, the

master logs the operation to disk. It then applies this log
record to its in-memory state by duplicating the metadata
for the source file or directory tree. The newly created snap-
shot files point to the same chunks as the source files.
The first time a client wants to write to a chunk C after

the snapshot operation, it sends a request to the master to
find the current lease holder. The master notices that the
reference count for chunk C is greater than one. It defers
replying to the client request and instead picks a new chunk

handle C’. It then asks each chunkserver that has a current
replica of C to create a new chunk called C’. By creating
the new chunk on the same chunkservers as the original, we
ensure that the data can be copied locally, not over the net-
work (our disks are about three times as fast as our 100 Mb
Ethernet links). From this point, request handling is no dif-
ferent from that for any chunk: the master grants one of the
replicas a lease on the new chunk C’ and replies to the client,
which can write the chunk normally, not knowing that it has
just been created from an existing chunk.

4. MASTER OPERATION
The master executes all namespace operations. In addi-

tion, it manages chunk replicas throughout the system: it
makes placement decisions, creates new chunks and hence
replicas, and coordinates various system-wide activities to
keep chunks fully replicated, to balance load across all the
chunkservers, and to reclaim unused storage. We now dis-
cuss each of these topics.

4.1 Namespace Management and Locking
Many master operations can take a long time: for exam-

ple, a snapshot operation has to revoke chunkserver leases on
all chunks covered by the snapshot. We do not want to delay
other master operations while they are running. Therefore,
we allow multiple operations to be active and use locks over
regions of the namespace to ensure proper serialization.
Unlike many traditional file systems, GFS does not have

a per-directory data structure that lists all the files in that
directory. Nor does it support aliases for the same file or
directory (i.e, hard or symbolic links in Unix terms). GFS
logically represents its namespace as a lookup table mapping
full pathnames to metadata. With prefix compression, this
table can be efficiently represented in memory. Each node
in the namespace tree (either an absolute file name or an
absolute directory name) has an associated read-write lock.
Each master operation acquires a set of locks before it

runs. Typically, if it involves /d1/d2/.../dn/leaf, it will
acquire read-locks on the directory names /d1, /d1/d2, ...,
/d1/d2/.../dn, and either a read lock or a write lock on the
full pathname /d1/d2/.../dn/leaf. Note that leaf may be
a file or directory depending on the operation.
We now illustrate how this locking mechanism can prevent

a file /home/user/foo from being created while /home/user
is being snapshotted to /save/user. The snapshot oper-
ation acquires read locks on /home and /save, and write
locks on /home/user and /save/user. The file creation ac-
quires read locks on /home and /home/user, and a write
lock on /home/user/foo. The two operations will be seri-
alized properly because they try to obtain conflicting locks
on /home/user. File creation does not require a write lock
on the parent directory because there is no “directory”, or
inode-like, data structure to be protected from modification.
The read lock on the name is sufficient to protect the parent
directory from deletion.
One nice property of this locking scheme is that it allows

concurrent mutations in the same directory. For example,
multiple file creations can be executed concurrently in the
same directory: each acquires a read lock on the directory
name and a write lock on the file name. The read lock on
the directory name suffices to prevent the directory from
being deleted, renamed, or snapshotted. The write locks on

file names serialize attempts to create a file with the same
name twice.
Since the namespace can have many nodes, read-write lock

objects are allocated lazily and deleted once they are not in
use. Also, locks are acquired in a consistent total order
to prevent deadlock: they are first ordered by level in the
namespace tree and lexicographically within the same level.

4.2 Replica Placement
A GFS cluster is highly distributed at more levels than

one. It typically has hundreds of chunkservers spread across
many machine racks. These chunkservers in turn may be
accessed from hundreds of clients from the same or different
racks. Communication between two machines on different
racks may cross one or more network switches. Addition-
ally, bandwidth into or out of a rack may be less than the
aggregate bandwidth of all the machines within the rack.
Multi-level distribution presents a unique challenge to dis-
tribute data for scalability, reliability, and availability.
The chunk replica placement policy serves two purposes:

maximize data reliability and availability, and maximize net-
work bandwidth utilization. For both, it is not enough to
spread replicas across machines, which only guards against
disk or machine failures and fully utilizes each machine’s net-
work bandwidth. We must also spread chunk replicas across
racks. This ensures that some replicas of a chunk will sur-
vive and remain available even if an entire rack is damaged
or offline (for example, due to failure of a shared resource
like a network switch or power circuit). It also means that
traffic, especially reads, for a chunk can exploit the aggre-
gate bandwidth of multiple racks. On the other hand, write
traffic has to flow through multiple racks, a tradeoff we make
willingly.

4.3 Creation, Re-replication, Rebalancing
Chunk replicas are created for three reasons: chunk cre-

ation, re-replication, and rebalancing.
When the master creates a chunk, it chooses where to

place the initially empty replicas. It considers several fac-
tors. (1) We want to place new replicas on chunkservers with
below-average disk space utilization. Over time this will
equalize disk utilization across chunkservers. (2) We want to
limit the number of “recent” creations on each chunkserver.
Although creation itself is cheap, it reliably predicts immi-
nent heavy write traffic because chunks are created when de-
manded by writes, and in our append-once-read-many work-
load they typically become practically read-only once they
have been completely written. (3) As discussed above, we
want to spread replicas of a chunk across racks.
The master re-replicates a chunk as soon as the number

of available replicas falls below a user-specified goal. This
could happen for various reasons: a chunkserver becomes
unavailable, it reports that its replica may be corrupted, one
of its disks is disabled because of errors, or the replication
goal is increased. Each chunk that needs to be re-replicated
is prioritized based on several factors. One is how far it is
from its replication goal. For example, we give higher prior-
ity to a chunk that has lost two replicas than to a chunk that
has lost only one. In addition, we prefer to first re-replicate
chunks for live files as opposed to chunks that belong to re-
cently deleted files (see Section 4.4). Finally, to minimize
the impact of failures on running applications, we boost the
priority of any chunk that is blocking client progress.

The master picks the highest priority chunk and “clones”
it by instructing some chunkserver to copy the chunk data
directly from an existing valid replica. The new replica is
placed with goals similar to those for creation: equalizing
disk space utilization, limiting active clone operations on
any single chunkserver, and spreading replicas across racks.
To keep cloning traffic from overwhelming client traffic, the
master limits the numbers of active clone operations both
for the cluster and for each chunkserver. Additionally, each
chunkserver limits the amount of bandwidth it spends on
each clone operation by throttling its read requests to the
source chunkserver.
Finally, the master rebalances replicas periodically: it ex-

amines the current replica distribution and moves replicas
for better disk space and load balancing. Also through this
process, the master gradually fills up a new chunkserver
rather than instantly swamps it with new chunks and the
heavy write traffic that comes with them. The placement
criteria for the new replica are similar to those discussed
above. In addition, the master must also choose which ex-
isting replica to remove. In general, it prefers to remove
those on chunkservers with below-average free space so as
to equalize disk space usage.

4.4 Garbage Collection
After a file is deleted, GFS does not immediately reclaim

the available physical storage. It does so only lazily during
regular garbage collection at both the file and chunk levels.
We find that this approach makes the system much simpler
and more reliable.

4.4.1 Mechanism
When a file is deleted by the application, the master logs

the deletion immediately just like other changes. However
instead of reclaiming resources immediately, the file is just
renamed to a hidden name that includes the deletion times-
tamp. During the master’s regular scan of the file system
namespace, it removes any such hidden files if they have ex-
isted for more than three days (the interval is configurable).
Until then, the file can still be read under the new, special
name and can be undeleted by renaming it back to normal.
When the hidden file is removed from the namespace, its in-
memory metadata is erased. This effectively severs its links
to all its chunks.
In a similar regular scan of the chunk namespace, the

master identifies orphaned chunks (i.e., those not reachable
from any file) and erases the metadata for those chunks. In
a HeartBeat message regularly exchanged with the master,
each chunkserver reports a subset of the chunks it has, and
the master replies with the identity of all chunks that are no
longer present in the master’s metadata. The chunkserver
is free to delete its replicas of such chunks.

4.4.2 Discussion
Although distributed garbage collection is a hard problem

that demands complicated solutions in the context of pro-
gramming languages, it is quite simple in our case. We can
easily identify all references to chunks: they are in the file-
to-chunk mappings maintained exclusively by the master.
We can also easily identify all the chunk replicas: they are
Linux files under designated directories on each chunkserver.
Any such replica not known to the master is “garbage.”

The garbage collection approach to storage reclamation
offers several advantages over eager deletion. First, it is
simple and reliable in a large-scale distributed system where
component failures are common. Chunk creation may suc-
ceed on some chunkservers but not others, leaving replicas
that the master does not know exist. Replica deletion mes-
sages may be lost, and the master has to remember to resend
them across failures, both its own and the chunkserver’s.
Garbage collection provides a uniform and dependable way
to clean up any replicas not known to be useful. Second,
it merges storage reclamation into the regular background
activities of the master, such as the regular scans of names-
paces and handshakes with chunkservers. Thus, it is done
in batches and the cost is amortized. Moreover, it is done
only when the master is relatively free. The master can re-
spond more promptly to client requests that demand timely
attention. Third, the delay in reclaiming storage provides a
safety net against accidental, irreversible deletion.
In our experience, the main disadvantage is that the delay

sometimes hinders user effort to fine tune usage when stor-
age is tight. Applications that repeatedly create and delete
temporary files may not be able to reuse the storage right
away. We address these issues by expediting storage recla-
mation if a deleted file is explicitly deleted again. We also
allow users to apply different replication and reclamation
policies to different parts of the namespace. For example,
users can specify that all the chunks in the files within some
directory tree are to be stored without replication, and any
deleted files are immediately and irrevocably removed from
the file system state.

4.5 Stale Replica Detection
Chunk replicas may become stale if a chunkserver fails

and misses mutations to the chunk while it is down. For
each chunk, the master maintains a chunk version number
to distinguish between up-to-date and stale replicas.
Whenever the master grants a new lease on a chunk, it

increases the chunk version number and informs the up-to-
date replicas. The master and these replicas all record the
new version number in their persistent state. This occurs
before any client is notified and therefore before it can start
writing to the chunk. If another replica is currently unavail-
able, its chunk version number will not be advanced. The
master will detect that this chunkserver has a stale replica
when the chunkserver restarts and reports its set of chunks
and their associated version numbers. If the master sees a
version number greater than the one in its records, the mas-
ter assumes that it failed when granting the lease and so
takes the higher version to be up-to-date.
The master removes stale replicas in its regular garbage

collection. Before that, it effectively considers a stale replica
not to exist at all when it replies to client requests for chunk
information. As another safeguard, the master includes
the chunk version number when it informs clients which
chunkserver holds a lease on a chunk or when it instructs
a chunkserver to read the chunk from another chunkserver
in a cloning operation. The client or the chunkserver verifies
the version number when it performs the operation so that
it is always accessing up-to-date data.

5. FAULT TOLERANCE AND DIAGNOSIS
One of our greatest challenges in designing the system is

dealing with frequent component failures. The quality and

quantity of components together make these problems more
the norm than the exception: we cannot completely trust
the machines, nor can we completely trust the disks. Com-
ponent failures can result in an unavailable system or, worse,
corrupted data. We discuss how we meet these challenges
and the tools we have built into the system to diagnose prob-
lems when they inevitably occur.

5.1 High Availability
Among hundreds of servers in a GFS cluster, some are

bound to be unavailable at any given time. We keep the
overall system highly available with two simple yet effective
strategies: fast recovery and replication.

5.1.1 Fast Recovery
Both the master and the chunkserver are designed to re-

store their state and start in seconds no matter how they
terminated. In fact, we do not distinguish between normal
and abnormal termination; servers are routinely shut down
just by killing the process. Clients and other servers experi-
ence a minor hiccup as they time out on their outstanding
requests, reconnect to the restarted server, and retry. Sec-
tion 6.2.2 reports observed startup times.

5.1.2 Chunk Replication
As discussed earlier, each chunk is replicated on multiple

chunkservers on different racks. Users can specify different
replication levels for different parts of the file namespace.
The default is three. The master clones existing replicas as
needed to keep each chunk fully replicated as chunkservers
go offline or detect corrupted replicas through checksum ver-
ification (see Section 5.2). Although replication has served
us well, we are exploring other forms of cross-server redun-
dancy such as parity or erasure codes for our increasing read-
only storage requirements. We expect that it is challenging
but manageable to implement these more complicated re-
dundancy schemes in our very loosely coupled system be-
cause our traffic is dominated by appends and reads rather
than small random writes.

5.1.3 Master Replication
The master state is replicated for reliability. Its operation

log and checkpoints are replicated on multiple machines. A
mutation to the state is considered committed only after
its log record has been flushed to disk locally and on all
master replicas. For simplicity, one master process remains
in charge of all mutations as well as background activities
such as garbage collection that change the system internally.
When it fails, it can restart almost instantly. If its machine
or disk fails, monitoring infrastructure outside GFS starts a
new master process elsewhere with the replicated operation
log. Clients use only the canonical name of the master (e.g.
gfs-test), which is a DNS alias that can be changed if the
master is relocated to another machine.
Moreover, “shadow” masters provide read-only access to

the file system even when the primary master is down. They
are shadows, not mirrors, in that they may lag the primary
slightly, typically fractions of a second. They enhance read
availability for files that are not being actively mutated or
applications that do not mind getting slightly stale results.
In fact, since file content is read from chunkservers, appli-
cations do not observe stale file content. What could be

stale within short windows is file metadata, like directory
contents or access control information.
To keep itself informed, a shadow master reads a replica of

the growing operation log and applies the same sequence of
changes to its data structures exactly as the primary does.
Like the primary, it polls chunkservers at startup (and infre-
quently thereafter) to locate chunk replicas and exchanges
frequent handshake messages with them to monitor their
status. It depends on the primary master only for replica
location updates resulting from the primary’s decisions to
create and delete replicas.

5.2 Data Integrity
Each chunkserver uses checksumming to detect corruption

of stored data. Given that a GFS cluster often has thousands
of disks on hundreds of machines, it regularly experiences
disk failures that cause data corruption or loss on both the
read and write paths. (See Section 7 for one cause.) We
can recover from corruption using other chunk replicas, but
it would be impractical to detect corruption by comparing
replicas across chunkservers. Moreover, divergent replicas
may be legal: the semantics of GFS mutations, in particular
atomic record append as discussed earlier, does not guar-
antee identical replicas. Therefore, each chunkserver must
independently verify the integrity of its own copy by main-
taining checksums.
A chunk is broken up into 64 KB blocks. Each has a corre-

sponding 32 bit checksum. Like other metadata, checksums
are kept in memory and stored persistently with logging,
separate from user data.
For reads, the chunkserver verifies the checksum of data

blocks that overlap the read range before returning any data
to the requester, whether a client or another chunkserver.
Therefore chunkservers will not propagate corruptions to
other machines. If a block does not match the recorded
checksum, the chunkserver returns an error to the requestor
and reports the mismatch to the master. In response, the
requestor will read from other replicas, while the master
will clone the chunk from another replica. After a valid new
replica is in place, the master instructs the chunkserver that
reported the mismatch to delete its replica.
Checksumming has little effect on read performance for

several reasons. Since most of our reads span at least a
few blocks, we need to read and checksum only a relatively
small amount of extra data for verification. GFS client code
further reduces this overhead by trying to align reads at
checksum block boundaries. Moreover, checksum lookups
and comparison on the chunkserver are done without any
I/O, and checksum calculation can often be overlapped with
I/Os.
Checksum computation is heavily optimized for writes

that append to the end of a chunk (as opposed to writes
that overwrite existing data) because they are dominant in
our workloads. We just incrementally update the check-
sum for the last partial checksum block, and compute new
checksums for any brand new checksum blocks filled by the
append. Even if the last partial checksum block is already
corrupted and we fail to detect it now, the new checksum
value will not match the stored data, and the corruption will
be detected as usual when the block is next read.
In contrast, if a write overwrites an existing range of the

chunk, we must read and verify the first and last blocks of
the range being overwritten, then perform the write, and

finally compute and record the new checksums. If we do
not verify the first and last blocks before overwriting them
partially, the new checksums may hide corruption that exists
in the regions not being overwritten.
During idle periods, chunkservers can scan and verify the

contents of inactive chunks. This allows us to detect corrup-
tion in chunks that are rarely read. Once the corruption is
detected, the master can create a new uncorrupted replica
and delete the corrupted replica. This prevents an inactive
but corrupted chunk replica from fooling the master into
thinking that it has enough valid replicas of a chunk.

5.3 Diagnostic Tools
Extensive and detailed diagnostic logging has helped im-

measurably in problem isolation, debugging, and perfor-
mance analysis, while incurring only a minimal cost. With-
out logs, it is hard to understand transient, non-repeatable
interactions between machines. GFS servers generate di-
agnostic logs that record many significant events (such as
chunkservers going up and down) and all RPC requests and
replies. These diagnostic logs can be freely deleted without
affecting the correctness of the system. However, we try to
keep these logs around as far as space permits.
The RPC logs include the exact requests and responses

sent on the wire, except for the file data being read or writ-
ten. By matching requests with replies and collating RPC
records on different machines, we can reconstruct the en-
tire interaction history to diagnose a problem. The logs also
serve as traces for load testing and performance analysis.
The performance impact of logging is minimal (and far

outweighed by the benefits) because these logs are written
sequentially and asynchronously. The most recent events
are also kept in memory and available for continuous online
monitoring.

6. MEASUREMENTS
In this section we present a few micro-benchmarks to illus-

trate the bottlenecks inherent in the GFS architecture and
implementation, and also some numbers from real clusters
in use at Google.

6.1 Micro-benchmarks
We measured performance on a GFS cluster consisting

of one master, two master replicas, 16 chunkservers, and
16 clients. Note that this configuration was set up for ease
of testing. Typical clusters have hundreds of chunkservers
and hundreds of clients.
All the machines are configured with dual 1.4 GHz PIII

processors, 2 GB of memory, two 80 GB 5400 rpm disks, and
a 100 Mbps full-duplex Ethernet connection to an HP 2524
switch. All 19 GFS server machines are connected to one
switch, and all 16 client machines to the other. The two
switches are connected with a 1 Gbps link.

6.1.1 Reads
N clients read simultaneously from the file system. Each

client reads a randomly selected 4 MB region from a 320 GB
file set. This is repeated 256 times so that each client ends
up reading 1 GB of data. The chunkservers taken together
have only 32 GB of memory, so we expect at most a 10% hit
rate in the Linux buffer cache. Our results should be close
to cold cache results.

Figure 3(a) shows the aggregate read rate for N clients
and its theoretical limit. The limit peaks at an aggregate of
125 MB/s when the 1 Gbps link between the two switches
is saturated, or 12.5 MB/s per client when its 100 Mbps
network interface gets saturated, whichever applies. The
observed read rate is 10 MB/s, or 80% of the per-client
limit, when just one client is reading. The aggregate read
rate reaches 94 MB/s, about 75% of the 125 MB/s link limit,
for 16 readers, or 6 MB/s per client. The efficiency drops
from 80% to 75% because as the number of readers increases,
so does the probability that multiple readers simultaneously
read from the same chunkserver.

6.1.2 Writes
N clients write simultaneously to N distinct files. Each

client writes 1 GB of data to a new file in a series of 1 MB
writes. The aggregate write rate and its theoretical limit are
shown in Figure 3(b). The limit plateaus at 67 MB/s be-
cause we need to write each byte to 3 of the 16 chunkservers,
each with a 12.5 MB/s input connection.
The write rate for one client is 6.3 MB/s, about half of the

limit. The main culprit for this is our network stack. It does
not interact very well with the pipelining scheme we use for
pushing data to chunk replicas. Delays in propagating data
from one replica to another reduce the overall write rate.
Aggregate write rate reaches 35 MB/s for 16 clients (or

2.2 MB/s per client), about half the theoretical limit. As in
the case of reads, it becomes more likely that multiple clients
write concurrently to the same chunkserver as the number
of clients increases. Moreover, collision is more likely for 16
writers than for 16 readers because each write involves three
different replicas.
Writes are slower than we would like. In practice this has

not been a major problem because even though it increases
the latencies as seen by individual clients, it does not sig-
nificantly affect the aggregate write bandwidth delivered by
the system to a large number of clients.

6.1.3 Record Appends
Figure 3(c) shows record append performance. N clients

append simultaneously to a single file. Performance is lim-
ited by the network bandwidth of the chunkservers that
store the last chunk of the file, independent of the num-
ber of clients. It starts at 6.0 MB/s for one client and drops
to 4.8 MB/s for 16 clients, mostly due to congestion and
variances in network transfer rates seen by different clients.
Our applications tend to produce multiple such files con-

currently. In other words, N clients append to M shared
files simultaneously where both N and M are in the dozens
or hundreds. Therefore, the chunkserver network congestion
in our experiment is not a significant issue in practice be-
cause a client can make progress on writing one file while
the chunkservers for another file are busy.

6.2 Real World Clusters
We now examine two clusters in use within Google that

are representative of several others like them. Cluster A is
used regularly for research and development by over a hun-
dred engineers. A typical task is initiated by a human user
and runs up to several hours. It reads through a few MBs
to a few TBs of data, transforms or analyzes the data, and
writes the results back to the cluster. Cluster B is primarily
used for production data processing. The tasks last much

Cluster A B

Chunkservers 342 227
Available disk space 72 TB 180 TB
Used disk space 55 TB 155 TB
Number of Files 735 k 737 k
Number of Dead files 22 k 232 k
Number of Chunks 992 k 1550 k
Metadata at chunkservers 13 GB 21 GB
Metadata at master 48 MB 60 MB

Table 2: Characteristics of two GFS clusters

longer and continuously generate and process multi-TB data
sets with only occasional human intervention. In both cases,
a single “task” consists of many processes on many machines
reading and writing many files simultaneously.

6.2.1 Storage
As shown by the first five entries in the table, both clusters

have hundreds of chunkservers, support many TBs of disk
space, and are fairly but not completely full. “Used space”
includes all chunk replicas. Virtually all files are replicated
three times. Therefore, the clusters store 18 TB and 52 TB
of file data respectively.
The two clusters have similar numbers of files, though B

has a larger proportion of dead files, namely files which were
deleted or replaced by a new version but whose storage have
not yet been reclaimed. It also has more chunks because its
files tend to be larger.

6.2.2 Metadata
The chunkservers in aggregate store tens of GBs of meta-

data, mostly the checksums for 64 KB blocks of user data.
The only other metadata kept at the chunkservers is the
chunk version number discussed in Section 4.5.
The metadata kept at the master is much smaller, only

tens of MBs, or about 100 bytes per file on average. This
agrees with our assumption that the size of the master’s
memory does not limit the system’s capacity in practice.
Most of the per-file metadata is the file names stored in a
prefix-compressed form. Other metadata includes file own-
ership and permissions, mapping from files to chunks, and
each chunk’s current version. In addition, for each chunk we
store the current replica locations and a reference count for
implementing copy-on-write.
Each individual server, both chunkservers and the master,

has only 50 to 100 MB of metadata. Therefore recovery is
fast: it takes only a few seconds to read this metadata from
disk before the server is able to answer queries. However, the
master is somewhat hobbled for a period – typically 30 to
60 seconds – until it has fetched chunk location information
from all chunkservers.

6.2.3 Read and Write Rates
Table 3 shows read and write rates for various time pe-

riods. Both clusters had been up for about one week when
these measurements were taken. (The clusters had been
restarted recently to upgrade to a new version of GFS.)
The average write rate was less than 30 MB/s since the

restart. When we took these measurements, B was in the
middle of a burst of write activity generating about 100 MB/s
of data, which produced a 300 MB/s network load because
writes are propagated to three replicas.

0 5 10 15
Number of clients N

0

50

100

R
ea

d
ra

te
 (

M
B

/s
)

Network limit

Aggregate read rate

(a) Reads

0 5 10 15
Number of clients N

0

20

40

60

W
ri

te
 r

at
e

(M
B

/s
)

Network limit

Aggregate write rate

(b) Writes

0 5 10 15
Number of clients N

0

5

10

A
pp

en
d

ra
te

 (
M

B
/s

) Network limit

Aggregate append rate

(c) Record appends

Figure 3: Aggregate Throughputs. Top curves show theoretical limits imposed by our network topology. Bottom curves
show measured throughputs. They have error bars that show 95% confidence intervals, which are illegible in some cases
because of low variance in measurements.

Cluster A B

Read rate (last minute) 583 MB/s 380 MB/s
Read rate (last hour) 562 MB/s 384 MB/s
Read rate (since restart) 589 MB/s 49 MB/s
Write rate (last minute) 1 MB/s 101 MB/s
Write rate (last hour) 2 MB/s 117 MB/s
Write rate (since restart) 25 MB/s 13 MB/s
Master ops (last minute) 325 Ops/s 533 Ops/s
Master ops (last hour) 381 Ops/s 518 Ops/s
Master ops (since restart) 202 Ops/s 347 Ops/s

Table 3: Performance Metrics for Two GFS Clusters

The read rates were much higher than the write rates.
The total workload consists of more reads than writes as we
have assumed. Both clusters were in the middle of heavy
read activity. In particular, A had been sustaining a read
rate of 580 MB/s for the preceding week. Its network con-
figuration can support 750 MB/s, so it was using its re-
sources efficiently. Cluster B can support peak read rates of
1300 MB/s, but its applications were using just 380 MB/s.

6.2.4 Master Load
Table 3 also shows that the rate of operations sent to the

master was around 200 to 500 operations per second. The
master can easily keep up with this rate, and therefore is
not a bottleneck for these workloads.
In an earlier version of GFS, the master was occasionally

a bottleneck for some workloads. It spent most of its time
sequentially scanning through large directories (which con-
tained hundreds of thousands of files) looking for particular
files. We have since changed the master data structures to
allow efficient binary searches through the namespace. It
can now easily support many thousands of file accesses per
second. If necessary, we could speed it up further by placing
name lookup caches in front of the namespace data struc-
tures.

6.2.5 Recovery Time
After a chunkserver fails, some chunks will become under-

replicated and must be cloned to restore their replication
levels. The time it takes to restore all such chunks depends
on the amount of resources. In one experiment, we killed a
single chunkserver in cluster B. The chunkserver had about

15,000 chunks containing 600 GB of data. To limit the im-
pact on running applications and provide leeway for schedul-
ing decisions, our default parameters limit this cluster to
91 concurrent clonings (40% of the number of chunkservers)
where each clone operation is allowed to consume at most
6.25 MB/s (50 Mbps). All chunks were restored in 23.2 min-
utes, at an effective replication rate of 440 MB/s.
In another experiment, we killed two chunkservers each

with roughly 16,000 chunks and 660 GB of data. This double
failure reduced 266 chunks to having a single replica. These
266 chunks were cloned at a higher priority, and were all
restored to at least 2x replication within 2 minutes, thus
putting the cluster in a state where it could tolerate another
chunkserver failure without data loss.

6.3 Workload Breakdown
In this section, we present a detailed breakdown of the

workloads on two GFS clusters comparable but not identi-
cal to those in Section 6.2. Cluster X is for research and
development while cluster Y is for production data process-
ing.

6.3.1 Methodology and Caveats
These results include only client originated requests so

that they reflect the workload generated by our applications
for the file system as a whole. They do not include inter-
server requests to carry out client requests or internal back-
ground activities, such as forwarded writes or rebalancing.
Statistics on I/O operations are based on information

heuristically reconstructed from actual RPC requests logged
by GFS servers. For example, GFS client code may break a
read into multiple RPCs to increase parallelism, from which
we infer the original read. Since our access patterns are
highly stylized, we expect any error to be in the noise. Ex-
plicit logging by applications might have provided slightly
more accurate data, but it is logistically impossible to re-
compile and restart thousands of running clients to do so
and cumbersome to collect the results from as many ma-
chines.
One should be careful not to overly generalize from our

workload. Since Google completely controls both GFS and
its applications, the applications tend to be tuned for GFS,
and conversely GFS is designed for these applications. Such
mutual influence may also exist between general applications

Operation Read Write Record Append
Cluster X Y X Y X Y

0K 0.4 2.6 0 0 0 0
1B..1K 0.1 4.1 6.6 4.9 0.2 9.2
1K..8K 65.2 38.5 0.4 1.0 18.9 15.2
8K..64K 29.9 45.1 17.8 43.0 78.0 2.8
64K..128K 0.1 0.7 2.3 1.9 < .1 4.3
128K..256K 0.2 0.3 31.6 0.4 < .1 10.6
256K..512K 0.1 0.1 4.2 7.7 < .1 31.2
512K..1M 3.9 6.9 35.5 28.7 2.2 25.5
1M..inf 0.1 1.8 1.5 12.3 0.7 2.2

Table 4: Operations Breakdown by Size (%). For
reads, the size is the amount of data actually read and trans-
ferred, rather than the amount requested.

and file systems, but the effect is likely more pronounced in
our case.

6.3.2 Chunkserver Workload
Table 4 shows the distribution of operations by size. Read

sizes exhibit a bimodal distribution. The small reads (un-
der 64 KB) come from seek-intensive clients that look up
small pieces of data within huge files. The large reads (over
512 KB) come from long sequential reads through entire
files.
A significant number of reads return no data at all in clus-

ter Y. Our applications, especially those in the production
systems, often use files as producer-consumer queues. Pro-
ducers append concurrently to a file while a consumer reads
the end of file. Occasionally, no data is returned when the
consumer outpaces the producers. Cluster X shows this less
often because it is usually used for short-lived data analysis
tasks rather than long-lived distributed applications.
Write sizes also exhibit a bimodal distribution. The large

writes (over 256 KB) typically result from significant buffer-
ing within the writers. Writers that buffer less data, check-
point or synchronize more often, or simply generate less data
account for the smaller writes (under 64 KB).
As for record appends, cluster Y sees a much higher per-

centage of large record appends than cluster X does because
our production systems, which use cluster Y, are more ag-
gressively tuned for GFS.
Table 5 shows the total amount of data transferred in op-

erations of various sizes. For all kinds of operations, the
larger operations (over 256 KB) generally account for most
of the bytes transferred. Small reads (under 64 KB) do
transfer a small but significant portion of the read data be-
cause of the random seek workload.

6.3.3 Appends versus Writes
Record appends are heavily used especially in our pro-

duction systems. For cluster X, the ratio of writes to record
appends is 108:1 by bytes transferred and 8:1 by operation
counts. For cluster Y, used by the production systems, the
ratios are 3.7:1 and 2.5:1 respectively. Moreover, these ra-
tios suggest that for both clusters record appends tend to
be larger than writes. For cluster X, however, the overall
usage of record append during the measured period is fairly
low and so the results are likely skewed by one or two appli-
cations with particular buffer size choices.
As expected, our data mutation workload is dominated

by appending rather than overwriting. We measured the
amount of data overwritten on primary replicas. This ap-

Operation Read Write Record Append
Cluster X Y X Y X Y

1B..1K < .1 < .1 < .1 < .1 < .1 < .1
1K..8K 13.8 3.9 < .1 < .1 < .1 0.1
8K..64K 11.4 9.3 2.4 5.9 2.3 0.3
64K..128K 0.3 0.7 0.3 0.3 22.7 1.2
128K..256K 0.8 0.6 16.5 0.2 < .1 5.8
256K..512K 1.4 0.3 3.4 7.7 < .1 38.4
512K..1M 65.9 55.1 74.1 58.0 .1 46.8
1M..inf 6.4 30.1 3.3 28.0 53.9 7.4

Table 5: Bytes Transferred Breakdown by Opera-
tion Size (%). For reads, the size is the amount of data
actually read and transferred, rather than the amount re-
quested. The two may differ if the read attempts to read
beyond end of file, which by design is not uncommon in our
workloads.

Cluster X Y

Open 26.1 16.3
Delete 0.7 1.5
FindLocation 64.3 65.8
FindLeaseHolder 7.8 13.4
FindMatchingFiles 0.6 2.2
All other combined 0.5 0.8

Table 6: Master Requests Breakdown by Type (%)

proximates the case where a client deliberately overwrites
previous written data rather than appends new data. For
cluster X, overwriting accounts for under 0.0001% of bytes
mutated and under 0.0003% of mutation operations. For
cluster Y, the ratios are both 0.05%. Although this is minute,
it is still higher than we expected. It turns out that most
of these overwrites came from client retries due to errors or
timeouts. They are not part of the workload per se but a
consequence of the retry mechanism.

6.3.4 Master Workload
Table 6 shows the breakdown by type of requests to the

master. Most requests ask for chunk locations (FindLo-
cation) for reads and lease holder information (FindLease-
Locker) for data mutations.
Clusters X and Y see significantly different numbers of

Delete requests because cluster Y stores production data
sets that are regularly regenerated and replaced with newer
versions. Some of this difference is further hidden in the
difference in Open requests because an old version of a file
may be implicitly deleted by being opened for write from
scratch (mode “w” in Unix open terminology).
FindMatchingFiles is a pattern matching request that sup-

ports “ls” and similar file system operations. Unlike other
requests for the master, it may process a large part of the
namespace and so may be expensive. Cluster Y sees it much
more often because automated data processing tasks tend to
examine parts of the file system to understand global appli-
cation state. In contrast, cluster X’s applications are under
more explicit user control and usually know the names of all
needed files in advance.

7. EXPERIENCES
In the process of building and deploying GFS, we have

experienced a variety of issues, some operational and some
technical.

Initially, GFS was conceived as the backend file system
for our production systems. Over time, the usage evolved
to include research and development tasks. It started with
little support for things like permissions and quotas but now
includes rudimentary forms of these. While production sys-
tems are well disciplined and controlled, users sometimes
are not. More infrastructure is required to keep users from
interfering with one another.
Some of our biggest problems were disk and Linux related.

Many of our disks claimed to the Linux driver that they
supported a range of IDE protocol versions but in fact re-
sponded reliably only to the more recent ones. Since the pro-
tocol versions are very similar, these drives mostly worked,
but occasionally the mismatches would cause the drive and
the kernel to disagree about the drive’s state. This would
corrupt data silently due to problems in the kernel. This
problem motivated our use of checksums to detect data cor-
ruption, while concurrently we modified the kernel to handle
these protocol mismatches.
Earlier we had some problems with Linux 2.2 kernels due

to the cost of fsync(). Its cost is proportional to the size
of the file rather than the size of the modified portion. This
was a problem for our large operation logs especially before
we implemented checkpointing. We worked around this for
a time by using synchronous writes and eventually migrated
to Linux 2.4.
Another Linux problem was a single reader-writer lock

which any thread in an address space must hold when it
pages in from disk (reader lock) or modifies the address
space in an mmap() call (writer lock). We saw transient
timeouts in our system under light load and looked hard for
resource bottlenecks or sporadic hardware failures. Even-
tually, we found that this single lock blocked the primary
network thread from mapping new data into memory while
the disk threads were paging in previously mapped data.
Since we are mainly limited by the network interface rather
than by memory copy bandwidth, we worked around this by
replacing mmap() with pread() at the cost of an extra copy.
Despite occasional problems, the availability of Linux code

has helped us time and again to explore and understand
system behavior. When appropriate, we improve the kernel
and share the changes with the open source community.

8. RELATED WORK
Like other large distributed file systems such as AFS [5],

GFS provides a location independent namespace which en-
ables data to be moved transparently for load balance or
fault tolerance. Unlike AFS, GFS spreads a file’s data across
storage servers in a way more akin to xFS [1] and Swift [3] in
order to deliver aggregate performance and increased fault
tolerance.
As disks are relatively cheap and replication is simpler

than more sophisticated RAID [9] approaches, GFS cur-
rently uses only replication for redundancy and so consumes
more raw storage than xFS or Swift.
In contrast to systems like AFS, xFS, Frangipani [12], and

Intermezzo [6], GFS does not provide any caching below the
file system interface. Our target workloads have little reuse
within a single application run because they either stream
through a large data set or randomly seek within it and read
small amounts of data each time.
Some distributed file systems like Frangipani, xFS, Min-

nesota’s GFS[11] and GPFS [10] remove the centralized server

and rely on distributed algorithms for consistency and man-
agement. We opt for the centralized approach in order to
simplify the design, increase its reliability, and gain flexibil-
ity. In particular, a centralized master makes it much easier
to implement sophisticated chunk placement and replication
policies since the master already has most of the relevant
information and controls how it changes. We address fault
tolerance by keeping the master state small and fully repli-
cated on other machines. Scalability and high availability
(for reads) are currently provided by our shadow master
mechanism. Updates to the master state are made persis-
tent by appending to a write-ahead log. Therefore we could
adapt a primary-copy scheme like the one in Harp [7] to pro-
vide high availability with stronger consistency guarantees
than our current scheme.
We are addressing a problem similar to Lustre [8] in terms

of delivering aggregate performance to a large number of
clients. However, we have simplified the problem signifi-
cantly by focusing on the needs of our applications rather
than building a POSIX-compliant file system. Additionally,
GFS assumes large number of unreliable components and so
fault tolerance is central to our design.
GFS most closely resembles the NASD architecture [4].

While the NASD architecture is based on network-attached
disk drives, GFS uses commodity machines as chunkservers,
as done in the NASD prototype. Unlike the NASD work,
our chunkservers use lazily allocated fixed-size chunks rather
than variable-length objects. Additionally, GFS implements
features such as rebalancing, replication, and recovery that
are required in a production environment.
Unlike Minnesota’s GFS and NASD, we do not seek to

alter the model of the storage device. We focus on ad-
dressing day-to-day data processing needs for complicated
distributed systems with existing commodity components.
The producer-consumer queues enabled by atomic record

appends address a similar problem as the distributed queues
in River [2]. While River uses memory-based queues dis-
tributed across machines and careful data flow control, GFS
uses a persistent file that can be appended to concurrently
by many producers. The River model supports m-to-n dis-
tributed queues but lacks the fault tolerance that comes with
persistent storage, while GFS only supports m-to-1 queues
efficiently. Multiple consumers can read the same file, but
they must coordinate to partition the incoming load.

9. CONCLUSIONS
The Google File System demonstrates the qualities es-

sential for supporting large-scale data processing workloads
on commodity hardware. While some design decisions are
specific to our unique setting, many may apply to data pro-
cessing tasks of a similar magnitude and cost consciousness.
We started by reexamining traditional file system assump-

tions in light of our current and anticipated application
workloads and technological environment. Our observations
have led to radically different points in the design space.
We treat component failures as the norm rather than the
exception, optimize for huge files that are mostly appended
to (perhaps concurrently) and then read (usually sequen-
tially), and both extend and relax the standard file system
interface to improve the overall system.
Our system provides fault tolerance by constant moni-

toring, replicating crucial data, and fast and automatic re-
covery. Chunk replication allows us to tolerate chunkserver

failures. The frequency of these failures motivated a novel
online repair mechanism that regularly and transparently re-
pairs the damage and compensates for lost replicas as soon
as possible. Additionally, we use checksumming to detect
data corruption at the disk or IDE subsystem level, which
becomes all too common given the number of disks in the
system.
Our design delivers high aggregate throughput to many

concurrent readers and writers performing a variety of tasks.
We achieve this by separating file system control, which
passes through the master, from data transfer, which passes
directly between chunkservers and clients. Master involve-
ment in common operations is minimized by a large chunk
size and by chunk leases, which delegates authority to pri-
mary replicas in data mutations. This makes possible a sim-
ple, centralized master that does not become a bottleneck.
We believe that improvements in our networking stack will
lift the current limitation on the write throughput seen by
an individual client.
GFS has successfully met our storage needs and is widely

used within Google as the storage platform for research and
development as well as production data processing. It is an
important tool that enables us to continue to innovate and
attack problems on the scale of the entire web.

ACKNOWLEDGMENTS
We wish to thank the following people for their contributions
to the system or the paper. Brain Bershad (our shepherd)
and the anonymous reviewers gave us valuable comments
and suggestions. Anurag Acharya, Jeff Dean, and David des-
Jardins contributed to the early design. Fay Chang worked
on comparison of replicas across chunkservers. Guy Ed-
jlali worked on storage quota. Markus Gutschke worked
on a testing framework and security enhancements. David
Kramer worked on performance enhancements. Fay Chang,
Urs Hoelzle, Max Ibel, Sharon Perl, Rob Pike, and Debby
Wallach commented on earlier drafts of the paper. Many of
our colleagues at Google bravely trusted their data to a new
file system and gave us useful feedback. Yoshka helped with
early testing.

REFERENCES
[1] Thomas Anderson, Michael Dahlin, Jeanna Neefe,

David Patterson, Drew Roselli, and Randolph Wang.
Serverless network file systems. In Proceedings of the
15th ACM Symposium on Operating System
Principles, pages 109–126, Copper Mountain Resort,
Colorado, December 1995.

[2] Remzi H. Arpaci-Dusseau, Eric Anderson, Noah
Treuhaft, David E. Culler, Joseph M. Hellerstein,
David Patterson, and Kathy Yelick. Cluster I/O with
River: Making the fast case common. In Proceedings
of the Sixth Workshop on Input/Output in Parallel
and Distributed Systems (IOPADS ’99), pages 10–22,
Atlanta, Georgia, May 1999.

[3] Luis-Felipe Cabrera and Darrell D. E. Long. Swift:
Using distributed disk striping to provide high I/O
data rates. Computer Systems, 4(4):405–436, 1991.

[4] Garth A. Gibson, David F. Nagle, Khalil Amiri, Jeff
Butler, Fay W. Chang, Howard Gobioff, Charles
Hardin, Erik Riedel, David Rochberg, and Jim
Zelenka. A cost-effective, high-bandwidth storage

architecture. In Proceedings of the 8th Architectural
Support for Programming Languages and Operating
Systems, pages 92–103, San Jose, California, October
1998.

[5] John Howard, Michael Kazar, Sherri Menees, David
Nichols, Mahadev Satyanarayanan, Robert
Sidebotham, and Michael West. Scale and
performance in a distributed file system. ACM
Transactions on Computer Systems, 6(1):51–81,
February 1988.

[6] InterMezzo. http://www.inter-mezzo.org, 2003.

[7] Barbara Liskov, Sanjay Ghemawat, Robert Gruber,
Paul Johnson, Liuba Shrira, and Michael Williams.
Replication in the Harp file system. In 13th
Symposium on Operating System Principles, pages
226–238, Pacific Grove, CA, October 1991.

[8] Lustre. http://www.lustreorg, 2003.

[9] David A. Patterson, Garth A. Gibson, and Randy H.
Katz. A case for redundant arrays of inexpensive disks
(RAID). In Proceedings of the 1988 ACM SIGMOD
International Conference on Management of Data,
pages 109–116, Chicago, Illinois, September 1988.

[10] Frank Schmuck and Roger Haskin. GPFS: A
shared-disk file system for large computing clusters. In
Proceedings of the First USENIX Conference on File
and Storage Technologies, pages 231–244, Monterey,
California, January 2002.

[11] Steven R. Soltis, Thomas M. Ruwart, and Matthew T.
O’Keefe. The Gobal File System. In Proceedings of the
Fifth NASA Goddard Space Flight Center Conference
on Mass Storage Systems and Technologies, College
Park, Maryland, September 1996.

[12] Chandramohan A. Thekkath, Timothy Mann, and
Edward K. Lee. Frangipani: A scalable distributed file
system. In Proceedings of the 16th ACM Symposium
on Operating System Principles, pages 224–237,
Saint-Malo, France, October 1997.

