
Democratizing content publication with Coral

Michael J. Freedman, Eric Freudenthal, David Mazières
New York University

http://www.scs.cs.nyu.edu/coral/

Abstract

CoralCDN is a peer-to-peer content distribution network
that allows a user to run a web site that offers high
performance and meets huge demand, all for the price of
a cheap broadband Internet connection. Volunteer sites
that run CoralCDN automatically replicate content as
a side effect of users accessing it. Publishing through
CoralCDN is as simple as making a small change to the
hostname in an object’s URL; a peer-to-peer DNS layer
transparently redirects browsers to nearby participating
cache nodes, which in turn cooperate to minimize load on
the origin web server. One of the system’s key goals is
to avoid creating hot spots that might dissuade volunteers
and hurt performance. It achieves this through Coral,
a latency-optimized hierarchical indexing infrastructure
based on a novel abstraction called a distributed sloppy
hash table, or DSHT.

1 Introduction

The availability of content on the Internet is to a large de-
gree a function of the cost shouldered by the publisher. A
well-funded web site can reach huge numbers of people
through some combination of load-balanced servers, fast
network connections, and commercial content distribu-
tion networks (CDNs). Publishers who cannot afford such
amenities are limited in the size of audience and type of
content they can serve. Moreover, their sites risk sudden
overload following publicity, a phenomenon nicknamed
the “Slashdot” effect, after a popular web site that period-
ically links to under-provisioned servers, driving unsus-
tainable levels of traffic to them. Thus, even struggling
content providers are often forced to expend significant
resources on content distribution.

Fortunately, at least with static content, there is an easy
way for popular data to reach many more people than
publishers can afford to serve themselves—volunteers can
mirror the data on their own servers and networks. In-
deed, the Internet has a long history of organizations with
good network connectivity mirroring data they consider to
be of value. More recently, peer-to-peer file sharing has
demonstrated the willingness of even individual broad-
band users to dedicate upstream bandwidth to redistribute
content the users themselves enjoy. Additionally, orga-
nizations that mirror popular content reduce their down-

stream bandwidth utilization and improve the latency for
local users accessing the mirror.

This paper describes CoralCDN, a decentralized, self-
organizing, peer-to-peer web-content distribution net-
work. CoralCDN leverages the aggregate bandwidth of
volunteers running the software to absorb and dissipate
most of the traffic for web sites using the system. In so do-
ing, CoralCDN replicates content in proportion to the con-
tent’s popularity, regardless of the publisher’s resources—
in effect democratizing content publication.

To use CoralCDN, a content publisher—or some-
one posting a link to a high-traffic portal—simply ap-
pends “.nyud.net:8090” to the hostname in a URL.
Through DNS redirection, oblivious clients with unmod-
ified web browsers are transparently redirected to nearby
Coral web caches. These caches cooperate to transfer data
from nearby peers whenever possible, minimizing both
the load on the origin web server and the end-to-end la-
tency experienced by browsers.

CoralCDN is built on top of a novel key/value indexing
infrastructure called Coral. Two properties make Coral
ideal for CDNs. First, Coral allows nodes to locate nearby
cached copies of web objects without querying more dis-
tant nodes. Second, Coral prevents hot spots in the in-
frastructure, even under degenerate loads. For instance,
if every node repeatedly stores the same key, the rate of
requests to the most heavily-loaded machine is still only
logarithmic in the total number of nodes.

Coral exploits overlay routing techniques recently pop-
ularized by a number of peer-to-peer distributed hash ta-
bles (DHTs). However, Coral differs from DHTs in sev-
eral ways. First, Coral’s locality and hot-spot prevention
properties are not possible for DHTs. Second, Coral’s
architecture is based on clusters of well-connected ma-
chines. Clusters are exposed in the interface to higher-
level software, and in fact form a crucial part of the DNS
redirection mechanism. Finally, to achieve its goals, Coral
provides weaker consistency than traditional DHTs. For
that reason, we call its indexing abstraction a distributed
sloppy hash table, or DSHT.

CoralCDN makes a number of contributions. It enables
people to publish content that they previously could not or
would not because of distribution costs. It is the first com-
pletely decentralized and self-organizing web-content dis-
tribution network. Coral, the indexing infrastructure, pro-

1

vides a new abstraction potentially of use to any applica-
tion that needs to locate nearby instances of resources on
the network. Coral also introduces an epidemic clustering
algorithm that exploits distributed network measurements.
Furthermore, Coral is the first peer-to-peer key/value in-
dex that can scale to many stores of the same key without
hot-spot congestion, thanks to a new rate-limiting tech-
nique. Finally, CoralCDN contains the first peer-to-peer
DNS redirection infrastructure, allowing the system to
inter-operate with unmodified web browsers.

Measurements of CoralCDN demonstrate that it al-
lows under-provisioned web sites to achieve dramatically
higher capacity, and its clustering provides quantitatively
better performance than locality-unaware systems.

The remainder of this paper is structured as follows.
Section 2 provides a high-level description of CoralCDN,
and Section 3 describes its DNS system and web caching
components. In Section 4, we describe the Coral index-
ing infrastructure, its underlying DSHT layers, and the
clustering algorithms. Section 5 includes an implementa-
tion overview and Section 6 presents experimental results.
Section 7 describes related work, Section 8 discusses fu-
ture work, and Section 9 concludes.

2 The Coral Content Distribution Network

The Coral Content Distribution Network (CoralCDN) is
composed of three main parts: (1) a network of coop-
erative HTTP proxies that handle users’ requests,1 (2) a
network of DNS nameservers for nyucd.net that map
clients to nearby Coral HTTP proxies, and (3) the under-
lying Coral indexing infrastructure and clustering machin-
ery on which the first two applications are built.

2.1 Usage Models

To enable immediate and incremental deployment, Coral-
CDN is transparent to clients and requires no software or
plug-in installation. CoralCDN can be used in a variety of
ways, including:

• Publishers. A web site publisher for x.com can
change selected URLs in their web pages to “Cor-
alized” URLs, such as http://www.x.com.
nyud.net:8090/y.jpg.

• Third-parties. An interested third-party—e.g., a
poster to a web portal or a Usenet group—can Coral-
ize a URL before publishing it, causing all embedded
relative links to use CoralCDN as well.

• Users. Coral-aware users can manually construct
Coralized URLs when surfing slow or overloaded

1While Coral’s HTTP proxy definitely provides proxy functionality,
it is not an HTTP proxy in the strict RFC2616 sense; it serves requests
that are syntactically formatted for an ordinary HTTP server.

.nyud.net/
www.x.com

www.x.com
.nyud.net

dns srv
http prx

Coral
dns srv
http prx

Coral
dns srv
http prx

Coral

dns srv
http prx

Coral

dns srv
http prx

Coral

Resolver Browser

dns srv

4 4
9

8, 11

5
1 6

10

72
3dns srv

http prx

Coral

http prx

Coral

Figure 1: Using CoralCDN, the steps involved in resolving a
Coralized URL and returning the corresponding file, per Sec-
tion 2.2. Rounded boxes represent CoralCDN nodes running
Coral, DNS, and HTTP servers. Solid arrows correspond to
Coral RPCs, dashed arrows to DNS traffic, dotted-dashed arrows
to network probes, and dotted arrows to HTTP traffic.

web sites. All relative links and HTTP redirects are
automatically Coralized.

2.2 System Overview

Figure 1 shows the steps that occur when a client accesses
a Coralized URL, such as http://www.x.com.
nyud.net:8090/, using a standard web browser. The
two main stages—DNS redirection and HTTP request
handling—both use the Coral indexing infrastructure.

1. A client sends a DNS request for www.x.com.
nyud.net to its local resolver.

2. The client’s resolver attempts to resolve the host-
name using some Coral DNS server(s), possibly
starting at one of the few registered under the .net
domain.

3. Upon receiving a query, a Coral DNS server probes
the client to determines its round-trip-time and last
few network hops.

4. Based on the probe results, the DNS server checks
Coral to see if there are any known nameservers
and/or HTTP proxies near the client’s resolver.

5. The DNS server replies, returning any servers found
through Coral in the previous step; if none were
found, it returns a random set of nameservers and
proxies. In either case, if the DNS server is close to
the client, it only returns nodes that are close to itself
(see Section 3.1).

6. The client’s resolver returns the address of a Coral
HTTP proxy for www.x.com.nyud.net.

2

7. The client sends the HTTP request http://www.
x.com.nyud.net:8090/ to the specified proxy.
If the proxy is caching the file locally, it returns the
file and stops. Otherwise, this process continues.

8. The proxy looks up the web object’s URL in Coral.
9. If Coral returns the address of a node caching the

object, the proxy fetches the object from this node.
Otherwise, the proxy downloads the object from the
origin server, www.x.com (not shown).

10. The proxy stores the web object and returns it to the
client browser.

11. The proxy stores a reference to itself in Coral,
recording the fact that is now caching the URL.

2.3 The Coral Indexing Abstraction

This section introduces the Coral indexing infrastructure
as used by CoralCDN. Coral provides a distributed sloppy
hash table (DSHT) abstraction. DSHTs are designed for
applications storing soft-state key/value pairs, where mul-
tiple values may be stored under the same key. Coral-
CDN uses this mechanism to map a variety of types of
key onto addresses of CoralCDN nodes. In particular, it
uses DSHTs to find Coral nameservers topologically close
clients’ networks, to find HTTP proxies caching particu-
lar web objects, and to locate nearby Coral nodes for the
purposes of minimizing internal request latency.

Instead of one global overlay as in [5, 14, 27], each
Coral node belongs to several distinct DSHTs called clus-
ters. Each cluster is characterized by a maximum desired
network round-trip-time (RTT) we call the diameter. The
system is parameterized by a fixed hierarchy of diameters
known as levels. Every node is a member of one DSHT
at each level. A group of nodes can form a level-i cluster
if a high-enough fraction their pair-wise RTTs are below
the level-i diameter threshold. Although Coral’s imple-
mentation allows for an arbitrarily-deep DSHT hierarchy,
this paper describes a three-level hierarchy with thresh-
olds of ∞, 60 msec, and 20 msec for level-0, -1, and -2
clusters respectively. Coral queries nodes in higher-level,
fast clusters before those in lower-level, slower clusters.
This both reduces the latency of lookups and increases
the chances of returning values stored by nearby nodes.

Coral provides the following interface to higher-level
applications:

• put(key , val , ttl , [levels]): Inserts a mapping from
the key to some arbitrary value, specifying the time-
to-live of the reference. The caller may optionally
specify a subset of the cluster hierarchy to restrict
the operation to certain levels.

• get(key , [levels]): Retrieves some subset of the val-
ues stored under a key. Again, one can optionally
specify a subset of the cluster hierarchy.

• nodes(level , count, [target], [services]): Returns
count neighbors belonging to the node’s cluster as
specified by level . target, if supplied, specifies the
IP address of a machine to which the returned nodes
would ideally be near. Coral can probe target and
exploit network topology hints stored in the DSHT
to satisfy the request. If services is specified, Coral
will only return nodes running the particular service,
e.g., an HTTP proxy or DNS server.

• levels(): Returns the number of levels in Coral’s hi-
erarchy and their corresponding RTT thresholds.

The next section describes the design of CoralCDN’s
DNS redirector and HTTP proxy—especially with regard
to their use of Coral’s DSHT abstraction and clustering
hierarchy—before returning to Coral in Section 4.

3 Application-Layer Components

The Coral DNS server directs browsers fetching Coralized
URLs to Coral HTTP proxies, attempting to find ones near
the requesting client. These HTTP proxies exploit each
others’ caches in such a way as to minimize both transfer
latency and the load on origin web servers.

3.1 The Coral DNS server

The Coral DNS server, dnssrv, returns IP addresses of
Coral HTTP proxies when browsers look up the host-
names in Coralized URLs. To improve locality, it at-
tempts to return proxies near requesting clients. In partic-
ular, whenever a DNS resolver (client) contacts a nearby
dnssrv instance, dnssrv both returns proxies within an ap-
propriate cluster, and ensures that future DNS requests
from that client will not need to leave the cluster. Using
the nodes function, dnssrv also exploits Coral’s on-the-
fly network measurement capabilities and stored topology
hints to increase the chances of clients discovering nearby
DNS servers.

More specifically, every instance of dnssrv is an au-
thoritative nameserver for the domain nyucd.net. As-
suming a 3-level hierarchy, as Coral is generally config-
ured, dnssrv maps any domain name ending http.L2.
L1.L0.nyucd.net to one or more Coral HTTP prox-
ies. (For an (n + 1)-level hierarchy, the domain name
is extended out to Ln in the obvious way.) Because
such names are somewhat unwieldy, we established a
DNS DNAME alias [4], nyud.net, with target http.
L2.L1.L0.nyucd.net. Any domain name ending
nyud.net is therefore equivalent to the same name with
suffix http.L2.L1.L0.nyucd.net, allowing Cor-
alized URLs to have the more concise form http://
www.x.com.nyud.net:8090/.

dnssrv assumes that web browsers are generally close
to their resolvers on the network, so that the source ad-

3

dress of a DNS query reflects the browser’s network lo-
cation. This assumption holds to varying degrees, but is
good enough that Akamai [12], Digital Island [6], and
Mirror Image [21] have all successfully deployed com-
mercial CDNs based on DNS redirection. The locality
problem therefore is reduced to returning proxies that are
near the source of a DNS request. In order to achieve lo-
cality, dnssrv measures its round-trip-time to the resolver
and categorizes it by level. For a 3-level hierarchy, the re-
solver will correspond to a level 2, level 1, or level 0 client,
depending on how its RTT compares to Coral’s cluster-
level thresholds.

When asked for the address of a hostname ending
http.L2.L1.L0.nyucd.net, dnssrv’s reply con-
tains two sections of interest: A set of addresses for the
name—answers to the query—and a set of nameservers
for that name’s domain—known as the authority section
of a DNS reply. dnssrv returns addresses of CoralProx-
ies in the cluster whose level corresponds to the client’s
level categorization. In other words, if the RTT between
the DNS client and dnssrv is below the level-i threshold
(for the best i), dnssrv will only return addresses of Coral
nodes in its level-i cluster. dnssrv obtains a list of such
nodes with the nodes function. Note that dnssrv always re-
turns CoralProxy addresses with short time-to-live fields
(30 seconds for levels 0 and 1, 60 for level 2).

To achieve better locality, dnssrv also specifies the
client’s IP address as a target argument to nodes. This
causes Coral to probe the addresses of the last five net-
work hops to the client and use the results to look for
clustering hints in the DSHTs. To avoid significantly de-
laying clients, Coral maps these network hops using a fast,
built-in traceroute-like mechanism that combines concur-
rent probes and aggressive time-outs to minimize latency.
The entire mapping process generally requires around 2
RTTs and 350 bytes of bandwidth. A Coral node caches
results to avoid repeatedly probing the same client.

The closer dnssrv is to a client, the better its selection of
CoralProxy addresses will likely be for the client. dnssrv
therefore exploits the authority section of DNS replies to
lock a DNS client into a good cluster whenever it happens
upon a nearby dnssrv. As with the answer section, dnssrv
selects the nameservers it returns from the appropriate
cluster level and uses the target argument to exploit mea-
surement and network hints. Unlike addresses in the an-
swer section, however, it gives nameservers in the author-
ity section a long TTL (one hour). A nearby dnssrv must
therefore override any inferior nameservers a DNS client
may be caching from previous queries. dnssrv does so by
manipulating the domain for which returned nameservers
are servers. To clients more distant than the level-1 timing
threshold, dnssrv claims to return nameservers for domain
L0.nyucd.net. For clients closer than that thresh-

old, it returns nameservers for L1.L0.nyucd.net. For
clients closer than the level-2 threshold, it returns name-
servers for domain L2.L1.L0.nyucd.net. Because
DNS resolvers query the servers for the most specific
known domain, this scheme allows closer dnssrv instances
to override the results of more distant ones.

Unfortunately, although resolvers can tolerate a frac-
tion of unavailable DNS servers, browsers do not han-
dle bad HTTP servers gracefully. (This is one reason for
returning CoralProxy addresses with short TTL fields.)
As an added precaution, dnssrv only returns CoralProxy
addresses which it has recently verified first-hand. This
sometimes means synchronously checking a proxy’s sta-
tus (via a UDP RPC) prior replying to a DNS query. We
note further that people who wish to contribute only up-
stream bandwidth can flag their proxy as “non-recursive,”
in which case dnssrv will only return that proxy to clients
on local networks.

3.2 The Coral HTTP proxy

The Coral HTTP proxy, CoralProxy, satisfies HTTP re-
quests for Coralized URLs. It seeks to provide reasonable
request latency and high system throughput, even while
serving data from origin servers behind comparatively
slow network links such as home broadband connections.
This design space requires particular care in minimiz-
ing load on origin servers compared to traditional CDNs,
for two reasons. First, many of Coral’s origin servers
are likely to have slower network connections than typ-
ical customers of commercial CDNs. Second, commer-
cial CDNs often collocate a number of machines at each
deployment site and then select proxies based in part on
the URL requested—effectively distributing URLs across
proxies. Coral, in contrast, selects proxies only based on
client locality. Thus, in CoralCDN, it is much easier for
every single proxy to end up fetching a particular URL.

To aggressively minimize load on origin servers, a
CoralProxy must fetch web pages from other proxies
whenever possible. Each proxy keeps a local cache from
which it can immediately fulfill requests. When a client
requests a non-resident URL, CoralProxy first attempts
to locate a cached copy of the referenced resource using
Coral (a get), with the resource indexed by a SHA-1 hash
of its URL [22]. If CoralProxy discovers that one or more
other proxies have the data, it attempts to fetch the data
from the proxy to which it first connects. If Coral provides
no referrals or if no referrals return the data, CoralProxy
must fetch the resource directly from the origin.

While CoralProxy is fetching a web object—either
from the origin or from another CoralProxy—it inserts a
reference to itself in its DSHTs with a time-to-live of 20
seconds. (It will renew this short-lived reference until it
completes the download.) Thus, if a flash crowd suddenly

4

fetches a web page, all CoralProxies, other than the first
simultaneous requests, will naturally form a kind of mul-
ticast tree for retrieving the web page. Once any Coral-
Proxy obtains the full file, it inserts a much longer-lived
reference to itself (e.g., 1 hour). Because the insertion al-
gorithm accounts for TTL, these longer-lived references
will overwrite shorter-lived ones, and they can be stored
on well-selected nodes even under high insertion load, as
later described in Section 4.2.

CoralProxies periodically renew referrals to resources
in their caches. A proxy should not evict a web object
from its cache while a reference to it may persist in the
DSHT. Ideally, proxies would adaptively set TTLs based
on cache capacity, though this is not yet implemented.

4 Coral: A Hierarchical Indexing System

This section describes the Coral indexing infrastructure,
which CoralCDN leverages to achieve scalability, self-
organization, and efficient data retrieval. We describe how
Coral implements the put and get operations that form
the basis of its distributed sloppy hash table (DSHT) ab-
straction: the underlying key-based routing layer (4.1),
the DSHT algorithms that balance load (4.2), and the
changes that enable latency and data-placement optimiza-
tions within a hierarchical set of DSHTs (4.3). Finally,
we describe the clustering mechanisms that manage this
hierarchical structure (4.4).

4.1 Coral’s Key-Based Routing Layer

Coral’s keys are opaque 160-bit ID values; nodes are as-
signed IDs in the same 160-bit identifier space. A node’s
ID is the SHA-1 hash of its IP address. Coral defines a
distance metric on IDs. Henceforth, we describe a node
as being close to a key if the distance between the key and
the node’s ID is small. A Coral put operation stores a
key/value pair at a node close to the key. A get operation
searches for stored key/value pairs at nodes successively
closer to the key. To support these operations, a node re-
quires some mechanism to discover other nodes close to
any arbitrary key.

Every DSHT contains a routing table. For any key k, a
node R’s routing table allows it to find a node closer to k,
unless R is already the closest node. These routing tables
are based on Kademlia [17], which defines the distance
between two values in the ID-space to be their bitwise
exclusive or (XOR), interpreted as an unsigned integer.
Using the XOR metric, IDs with longer matching prefixes
(of most significant bits) are numerically closer.

The size of a node’s routing table in a DSHT is logarith-
mic in the total number of nodes comprising the DSHT.
If a node R is not the closest node to some key k, then
R’s routing table almost always contains either the clos-

976

4 6 7 9 10

103 410

RPC#3 (0)

R

0 2 3 13 14

{4, 5, 7}

109764310

4 5 7

{4, 5, 7}
RPC#1 (2)

target 2

RPC#2 (1)

target 0

target 5distance (nodeids xor 4)

nodeids

Figure 2: Example of routing operations in a system contain-
ing eight nodes with IDs {4, 5, 7, 0, 2, 3, 13, 14}. In this illus-
tration, node R with id = 14 is looking up the node closest to
key k = 4, and we have sorted the nodes by their distance to
k. The top boxed row illustrates XOR distances for the nodes
{0, 2, 3, 13, 14} that are initially known by R. R first contacts a
known peer whose distance to k is closest to half of R’s distance
(10/2 = 5); in this illustration, this peer is node zero, whose
distance to k is 0 ⊕ 4=4. Data in RPC requests and responses
are shown in parentheses and braces, respectively: R asks node
zero for its peers that are half-way closer to k, i.e., those at dis-
tance 4

2
=2. R inserts these new references into its routing table

(middle row). R now repeats this process, contacting node five,
whose distance 1 is closest to 4

2
. Finally, R contacts node four,

whose distance is 0, and completes its search (bottom row).

est node to k, or some node whose distance to k is at least
one bit shorter than R’s. This permits R to visit a se-
quence of nodes with monotonically decreasing distances
[d1, d2, . . .] to k, such that the encoding of di+1 as a bi-
nary number has one fewer bit than di. As a result, the
expected number of iterations for R to discover the clos-
est node to k is logarithmic in the number of nodes.

Figure 2 illustrates the Coral routing algorithm, which
successively visits nodes whose distances to the key are
approximately halved each iteration. Traditional key-
based routing layers attempt to route directly to the node
closest to the key whenever possible [25, 26, 31, 35], re-
sorting to several intermediate hops only when faced with
incomplete routing information. By caching additional
routing state—beyond the necessary log(n) references—
these systems in practice manage to achieve routing in a
constant number of hops. We observe that frequent refer-
ences to the same key can generate high levels of traffic in
nodes close to the key. This congestion, called tree satu-
ration, was first identified in shared-memory interconnec-
tion networks [24].

5

To minimize tree saturation, each iteration of a Coral
search prefers to correct only b bits at a time.2 More
specifically, let splice(k, r, i) designate the most signifi-
cant bi bits of k followed by the least significant 160− bi
bits of r. If node R with ID r wishes to search for key
k, R first initializes a variable t ← r. At each iteration,
R updates t ← splice(k, t, i), using the smallest value
of i that yields a new value of t. The next hop in the
lookup path is the closest node to t that already exists in
R’s routing table. As described below, by limiting the use
of potentially closer known hops in this way, Coral can
avoid overloading any node, even in the presence of very
heavily accessed keys.

The potential downside of longer lookup paths is higher
lookup latency in the presence of slow or stale nodes. In
order to mitigate these effects, Coral keeps a window of
multiple outstanding RPCs during a lookup, possibly con-
tacting the closest few nodes to intermediary target t.

4.2 Sloppy Storage

Coral uses a sloppy storage technique that caches
key/value pairs at nodes whose IDs are close to the key
being referenced. These cached values reduce hot-spot
congestion and tree saturation throughout the indexing in-
frastructure: They frequently satisfy put and get requests
at nodes other than those closest to the key. This charac-
teristic differs from DHTs, whose put operations all pro-
ceed to nodes closest to the key.

The Insertion Algorithm. Coral performs a two-phase
operation to insert a key/value pair. In the first, or “for-
ward,” phase, Coral routes to nodes that are successively
closer to the key, as previously described. However, to
avoid tree saturation, an insertion operation may terminate
prior to locating the closest node to the key, in which case
the key/value pair will be stored at a more distant node.
More specifically, the forward phase terminates whenever
the storing node happens upon another node that is both
full and loaded for the key:

1. A node is full with respect to some key k when it
stores l values for k whose TTLs are all at least one-
half of the new value.

2. A node is loaded with respect to k when it has re-
ceived more than the maximum leakage rate β re-
quests for k within the past minute.

In our experiments, l =4 and β =12, meaning that un-
der high load, a node claims to be loaded for all but one
store attempt every 5 seconds. This prevents excessive
numbers of requests from hitting the key’s closest nodes,
yet still allows enough requests to propagate to keep val-
ues at these nodes fresh.

2Experiments in this paper use b = 1.

In the forward phase, Coral’s routing layer makes re-
peated RPCs to contact nodes successively closer to the
key. Each of these remote nodes returns (1) whether the
key is loaded and (2) the number of values it stores under
the key, along with the minimum expiry time of any such
values. The client node uses this information to determine
if the remote node can accept the store, potentially evict-
ing a value with a shorter TTL. This forward phase ter-
minates when the client node finds either the node closest
to the key, or a node that is full and loaded with respect
to the key. The client node places all contacted nodes that
are not both full and loaded on a stack, ordered by XOR
distance from the key.

During the reverse phase, the client node attempts to
insert the value at the remote node referenced by the
top stack element, i.e., the node closest to the key. If
this operation does not succeed—perhaps due to others’
insertions—the client node pops the stack and tries to in-
sert on the new stack top. This process is repeated until a
store succeeds or the stack is empty.

This two-phase algorithm avoids tree saturation by stor-
ing values progressively further from the key. Still, evic-
tion and the leakage rate β ensure that nodes close to
the key retain long-lived values, so that live keys remain
reachable: β nodes per minute that contact an interme-
diate node (including itself) will go on to contact nodes
closer to the key. For a perfectly-balanced tree, the key’s
closest node receives only

(

β · (2b− 1) · d log n

b
e
)

store
requests per minute, when fixing b bits per iteration.

Proof sketch. Each node in a system of n nodes can be
uniquely identified by a string S of log n bits. Consider
S to be a string of b-bit digits. A node will contact the
closest node to the key before it contacts any other node
if and only if its ID differs from the key in exactly one
digit. There are d(log n)/be digits in S. Each digit can
take on 2b−1 values that differ from the key. Every node
that differs in one digit will throttle all but β requests per
minute. Therefore, the closest node receives a maximum
rate of

(

β · (2b−1) · d log n

b
e
)

RPCs per minute.
Irregularities in the node ID distribution may increase

this rate slightly, but the overall rate of traffic is still loga-
rithmic, while in traditional DHTs it is linear. Section 6.4
provides supporting experimental evidence.

The Retrieval Algorithm. To retrieve the value associ-
ated with a key k, a node simply traverses the ID space
with RPCs. When it finds a peer storing k, the remote
peer returns k’s corresponding list of values. The node ter-
minates its search and get returns. The requesting client
application handles these redundant references in some
application-specific way, e.g., CoralProxy contacts mul-
tiple sources in parallel to download cached content.

Multiple stores of the same key will be spread over mul-
tiple nodes. The pointers retrieved by the application are

6

thus distributed among those stored, providing load bal-
ancing both within Coral and between servers using Coral.

4.3 Hierarchical Operations

For locality-optimized routing and data placement, Coral
uses several levels of DSHTs called clusters. Each level-
i cluster is named by a randomly-chosen 160-bit cluster
identifier; the level-0 cluster ID is predefined as 0160. Re-
call that a set of nodes should form a cluster if their aver-
age, pair-wise RTTs are below some threshold. As men-
tioned earlier, we describe a three-level hierarchy with
thresholds of∞, 60 msec, and 20 msec for level-0, -1, and
-2 clusters respectively. In Section 6, we present experi-
mental evidence to the client-side benefit of clustering.

Figure 3 illustrates Coral’s hierarchical routing opera-
tions. Each Coral node has the same node ID in all clus-
ters to which it belongs; we can view a node as projecting
its presence to the same location in each of its clusters.
This structure must be reflected in Coral’s basic routing
infrastructure, in particular to support switching between
a node’s distinct DSHTs midway through a lookup.3

The Hierarchical Retrieval Algorithm. A requesting
node R specifies the starting and stopping levels at which
Coral should search. By default, it initiates the get query
on its highest (level-2) cluster to try to take advantage of
network locality. If routing RPCs on this cluster hit some
node storing the key k (RPC 1 in Fig. 3), the lookup halts
and returns the corresponding stored value(s)—a hit—
without ever searching lower-level clusters.

If a key is not found, the lookup will reach k’s closest
node C2 in this cluster (RPC 2), signifying failure at this
level. So, node R continues the search in its level-1 clus-
ter. As these clusters are very often concentric, C2 likely
exists at the identical location in the identifier space in all
clusters, as shown. R begins searching onward from C2

in its level-1 cluster (RPC 3), having already traversed the
ID-space up to C2’s prefix.

Even if the search eventually switches to the global
cluster (RPC 4), the total number of RPCs required is
about the same as a single-level lookup service, as a
lookup continues from the point at which it left off in
the identifier space of the previous cluster. Thus, (1)
all lookups at the beginning are fast, (2) the system can
tightly bound RPC timeouts, and (3) all pointers in higher-
level clusters reference data within that local cluster.

The Hierarchical Insertion Algorithm. A node starts
by performing a put on its level-2 cluster as in Section 4.2,
so that other nearby nodes can take advantage of locality.

3We initially built Coral using the Chord [31] routing layer as a
block-box; difficulties in maintaining distinct clusters and the complex-
ity of the subsequent system caused us to scrap the implementation.

C 2

C 1 C 2

C 1

C 0

C 2
10

1

1

1

1

1

111

1

1

11

0

0

0

0 0

0

0 0

0

0

0

0

000 1 1

1

1

1

11

1

1

0

0

0 0

0

0

0 1

10

1

1

0

0 0

160−bit id space 11...11

level 2
k

level 0

1

3

2

4

R

R

R

level 1

1

00...00

1

0

Figure 3: Coral’s hierarchical routing structure. Nodes use the
same IDs in each of their clusters; higher-level clusters are natu-
rally sparser. Note that a node can be identified in a cluster by its
shortest unique ID prefix, e.g., “11” for R in its level-2 cluster;
nodes sharing ID prefixes are located on common subtrees and
are closer in the XOR metric. While higher-level neighbors usu-
ally share lower-level clusters as shown, this is not necessarily
so. RPCs for a retrieval on key k are sequentially numbered.

However, this placement is only “correct” within the con-
text of the local level-2 cluster. Thus, provided that the
key is not already loaded, the node continues its insertion
in the level-1 cluster from the point at which the key was
inserted in level 2, much as in the retrieval case. Again,
Coral traverses the ID-space only once. As illustrated
in Figure 3, this practice results in a loose hierarchical
cache, whereby a lower-level cluster contains nearly all
data stored in the higher-level clusters to which its mem-
bers also belong.

To enable such cluster-aware behavior, the headers of
every Coral RPC include the sender’s cluster information:
the identifier, age, and a size estimate of each of its non-
global clusters. The recipient uses this information to de-
multiplex requests properly, i.e., a recipient should only
consider a put and get for those levels on which it shares
a cluster with the sender. Additionally, this information
drives routing table management: (1) nodes are added or
removed from the local cluster-specific routing tables ac-

7

cordingly; (2) cluster information is accumulated to drive
cluster management, as described next.

4.4 Joining and Managing Clusters

As in any peer-to-peer system, a peer contacts an existing
node to join the system. Next, a new node makes sev-
eral queries to seed its routing tables. However, for non-
global clusters, Coral adds one important requirement: A
node will only join an acceptable cluster, where accept-
ability requires that the latency to 80% of the nodes be
below the cluster’s threshold. A node can easily deter-
mine whether this condition holds by recording minimum
round-trip-times (RTTs) to some subset of nodes belong-
ing to the cluster.

While nodes learn about clusters as a side effect of nor-
mal lookups, Coral also exploits its DSHTs to store hints.
When Coral starts up, it uses its built-in fast traceroute
mechanism (described in Section 3.1) to determine the ad-
dresses of routers up to five hops out. Excluding any pri-
vate (“RFC1918”) IP addresses, Coral uses these router
addresses as keys under which to index clustering hints in
its DSHTs. More specifically, a node R stores mappings
from each router address to its own IP address and UDP
port number. When a new node S, sharing a gateway with
R, joins the network, it will find one or more of R’s hints
and quickly cluster with it, assuming R is, in fact, near S.

In addition, nodes store mappings to themselves using
as keys any IP subnets they directly connect to and the
24-bit prefixes of gateway router addresses. These prefix
hints are of use to Coral’s level function, which tracer-
outes clients in the other direction; addresses on forward
and reverse traceroute paths often share 24-bit prefixes.

Nodes continuously collect clustering information from
peers: All RPCs include round-trip-times, cluster mem-
bership, and estimates of cluster size. Every five min-
utes, each node considers changing its cluster member-
ship based on this collected data. If this collected data
indicates that an alternative candidate cluster is desirable,
the node first validates the collected data by contacting
several nodes within the candidate cluster by routing to
selected keys. A node can also form a new singleton clus-
ter when 50% of its accesses to members of its present
cluster do not meet the RTT constraints.

If probes indicate that 80% of a cluster’s nodes are
within acceptable TTLs and the cluster is larger, it re-
places a node’s current cluster. If multiple clusters are
acceptable, then Coral chooses the largest cluster.

Unfortunately, Coral has only rough approximations of
cluster size, based on its routing-table size. If nearby clus-
ters A and B are of similar sizes, inaccurate estimations
could lead to oscillation as nodes flow back-and-forth (al-
though we have not observed such behavior). To perturb
an oscillating system into a stable state, Coral employs a

preference function δ that shifts every hour. A node se-
lects the larger cluster only if the following holds:

∣

∣

∣
log(sizeA)− log(sizeB)

∣

∣

∣
> δ (min(ageA, ageB))

where age is the current time minus the cluster’s creation
time. Otherwise, a node simply selects the cluster with
the lower cluster ID.

We use a square wave function for δ that takes a value
0 on an even number of hours and 2 on an odd number.
For clusters of disproportionate size, the selection func-
tion immediately favors the larger cluster. Otherwise, δ’s
transition perturbs clusters to a steady state.4

In either case, a node that switches clusters still remains
in the routing tables of nodes in its old cluster. Thus,
old neighbors will still contact it and learn of its new,
potentially-better, cluster. This produces an avalanche ef-
fect as more and more nodes switch to the larger cluster.
This merging of clusters is very beneficial. While a small
cluster diameter provides fast lookup, a large cluster ca-
pacity increases the hit rate.

5 Implementation

The Coral indexing system is composed of a client library
and stand-alone daemon. The simple client library allows
applications, such as our DNS server and HTTP proxy, to
connect to and interface with the Coral daemon. Coral is
14,000 lines of C++, the DNS server, dnssrv, is 2,000 lines
of C++, and the HTTP proxy is an additional 4,000 lines.
All three components use the asynchronous I/O library
provided by the SFS toolkit [19] and are structured by
asynchronous events and callbacks. Coral network com-
munication is via RPC over UDP. We have successfully
run Coral on Linux, OpenBSD, FreeBSD, and Mac OS X.

6 Evaluation

In this section, we provide experimental results that sup-
port our following hypotheses:

1. CoralCDN dramatically reduces load on servers,
solving the “flash crowd” problem.

2. Clustering provides performance gains for popular
data, resulting in good client performance.

3. Coral naturally forms suitable clusters.

4. Coral prevents hot spots within its indexing system.

4Should clusters of similar size continuously exchange members
when δ is zero, as soon as δ transitions, nodes will all flow to the cluster
with the lower cluster id. Should the clusters oscillate when δ = 2 (as
the estimations “hit” with one around 2

2-times larger), the nodes will all
flow to the larger one when δ returns to zero.

8

To examine all claims, we present wide-area measure-
ments of a synthetic work-load on CoralCDN nodes run-
ning on PlanetLab, an internationally-deployed test bed.
We use such an experimental setup because traditional
tests for CDNs or web servers are not interesting in evalu-
ating CoralCDN: (1) Client-side traces generally measure
the cacheability of data and client latencies. However, we
are mainly interested in how well the system handles load
spikes. (2) Benchmark tests such as SPECweb99 mea-
sure the web server’s throughput on disk-bound access
patterns, while CoralCDN is designed to reduce load on
off-the-shelf web servers that are network-bound.

The basic structure of the experiments were is follows.
First, on 166 PlanetLab machines geographically distri-
buted mainly over North America and Europe, we launch
a Coral daemon, as well as a dnssrv and CoralProxy.
For experiments referred to as multi-level, we configure a
three-level hierarchy by setting the clustering RTT thresh-
old of level 1 to 60 msec and level 2 to 20 msec. Ex-
periments referred to as single-level use only the level-0
global cluster. No objects are evicted from CoralProxy
caches during these experiments. For simplicity, all nodes
are seeded with the same well-known host. The network
is allowed to stabilize for 30 minutes.5

Second, we run an unmodified Apache web server
sitting behind a DSL line with 384 Kbit/sec upstream
bandwidth, serving 12 different 41KB files, representing
groups of three embedded images referenced by four web
pages.

Third, we launch client processes on each machine that,
after an additional random delay between 0 and 180 sec-
onds for asynchrony, begin making HTTP GET requests
to Coralized URLs. Each client generates requests for the
group of three files, corresponding to a randomly selected
web page, for a period of 30 minutes. While we recognize
that web traffic generally has a Zipf distribution, we are
attempting merely to simulate a flash crowd to a popular
web page with multiple, large, embedded images (i.e., the
Slashdot effect). With 166 clients, we are generating 99.6
requests/sec, resulting in a cumulative download rate of
approximately 32, 800 Kb/sec. This rate is almost two or-
ders of magnitude greater than the origin web server could
handle. Note that this rate was chosen synthetically and
in no way suggests a maximum system throughput.

For Experiment 4 (Section 6.4), we do not run any such
clients. Instead, Coral nodes generate requests at very
high rates, all for the same key , to examine how the DSHT
indexing infrastructure prevents nodes close to a target ID
from becoming overloaded.

5The stabilization time could be made shorter by reducing the clus-
tering period (5 minutes). Additionally, in real applications, clustering
is in fact a simpler task, as new nodes would immediately join nearby
large clusters as they join the pre-established system. In our setup, clus-
ters develop from an initial network comprised entirely of singletons.

 0

 100

 200

 300

 0 300 600 900 1200

R
eq

ue
st

s
/ M

in
ut

e

Time (sec)

level 2
level 1
level 0

origin server

Figure 4: The number of client accesses to CoralProxies and the
origin HTTP server. CoralProxy accesses are reported relative to
the cluster level from which data was fetched, and do not include
requests handled through local caches.

6.1 Server Load

Figure 4 plots the number of requests per minute that
could not be handled by a CoralProxy’s local cache. Dur-
ing the initial minute, 15 requests hit the origin web server
(for 12 unique files). The 3 redundant lookups are due to
the simultaneity at which requests are generated; subse-
quently, requests are handled either through CoralCDN’s
wide-area cooperative cache or through a proxy’s local
cache, supporting our hypothesis that CoralCDN can mi-
grate load off of a web server.

During this first minute, equal numbers of requests
were handled by the level-1 and level-2 cluster caches.
However, as the files propagated into CoralProxy caches,
requests quickly were resolved within faster level-2 clus-
ters. Within 8-10 minutes, the files became replicated at
nearly every server, so few client requests went further
than the proxies’ local caches. Repeated runs of this ex-
periment yielded some variance in the relative magnitudes
of the initial spikes in requests to different levels, although
the number of origin server hits remained consistent.

6.2 Client Latency

Figure 5 shows the end-to-end latency for a client to fetch
a file from CoralCDN, following the steps given in Sec-
tion 2.2. The top graph shows the latency across all Plan-
etLab nodes used in the experiment, the bottom graph
only includes data from the clients located on 5 nodes
in Asia (Hong Kong (2), Taiwan, Japan, and the Philip-
pines). Because most nodes are located in the U.S. or Eu-
rope, the performance benefit of clustering is much more
pronounced on the graph of Asian nodes.

Recall that this end-to-end latency includes the time for
the client to make a DNS request and to connect to the

9

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.2 0.4 0.6 0.8 1

La
te

nc
y

(s
ec

)

Fraction of Requests

single-level
multi-level
multi-level, traceroute

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.2 0.4 0.6 0.8 1

La
te

nc
y

(s
ec

)

Fraction of Requests

Asia, single-level
Asia, multi-level
Asia, multi-level, traceroute

Request latency (sec) All nodes Asian nodes
50% 96% 50% 96%

single-level 0.79 9.54 2.52 8.01
multi-level 0.31 4.17 0.04 4.16

multi-level, traceroute 0.19 2.50 0.03 1.75

Figure 5: End-to-End client latency for requests for Coralized
URLs, comparing the effect of single-level vs. multi-level clus-
ters and of using traceroute during DNS redirection. The top
graph includes all nodes; the bottom only nodes in Asia.

discovered CoralProxy. The proxy attempts to fulfill the
client request first through its local cache, then through
Coral, and finally through the origin web server. We note
that CoralProxy implements cut-through routing by for-
warding data to the client prior to receiving the entire file.

These figures report three results: (1) the distribution of
latency of clients using only a single level-0 cluster (the
solid line), (2) the distribution of latencies of clients using
multi-level clusters (dashed), and (3) the same hierarchi-
cal network, but using traceroute during DNS resolution
to map clients to nearby proxies (dotted).

All clients ran on the same subnet (and host, in fact) as a
CoralProxy in our experimental setup. This would not be
the case in the real deployment: We would expect a com-

 0.01

 0.1

 1

 10

 0 0.2 0.4 0.6 0.8 1

La
te

nc
y

(s
ec

)

Fraction of Requests

single-level
multi-level

Figure 6: Latencies for proxy to get keys from Coral.

bination of hosts sharing networks with CoralProxies—
within the same IP prefix as registered with Coral—and
hosts without. Although the multi-level network using
traceroute provides the lowest latency at most percentiles,
the multi-level system without traceroute also performs
better than the single-level system. Clustering has a clear
performance benefit for clients, and this benefit is partic-
ularly apparent for poorly-connected hosts.

Figure 6 shows the latency of get operations, as seen by
CoralProxies when they lookup URLs in Coral (Step 8 of
Section 2.2). We plot the get latency on the single level-0
system vs. the multi-level systems. The multi-level sys-
tem is 2-5 times faster up to the 80% percentile. After the
98% percentile, the single-level system is actually faster:
Under heavy packet loss, the multi-system requires a few
more timeouts as it traverses its hierarchy levels.

6.3 Clustering

Figure 7 illustrates a snapshot of the clusters from the pre-
vious experiments, at the time when clients began fetch-
ing URLs (30 minutes out). This map is meant to provide
a qualitative feel for the organic nature of cluster devel-
opment, as opposed to offering any quantitative measure-
ments. On both maps, each unique, non-singleton clus-
ter within the network is assigned a letter. We have plot-
ted the location of our nodes by latitude/longitude coor-
dinates. If two nodes belong to the same cluster, they are
represented by the same letter. As each PlanetLab site
usually collocates several servers, the size of the letter
expresses the number of nodes at that site that belong to
the same cluster. For example, the very large “H” (world
map) and “A” (U.S. map) correspond to nodes collocated
at U.C. Berkeley. We did not include singleton clusters on
the maps to improve readability; post-run analysis showed
that such nodes’ RTTs to others (surprisingly, sometimes
even at the same site) were above the Coral thresholds.

10

AA

B

C
C

D
E

F

GG

HH
H

H
H

HH
HH

H
H

H
H H

H
H

I

I I
II

I

III

I

I II
I

I
I

I
I I

I I
II I

I

I I IIII
I

II

I

I
I I

I
I

I
I III

I

J

J
J

J
J

JJ J
J

J J

J

K
K

AA

B

C
C

D
E

F

GG

HHHHH HH

H

H

HHH
H

HH
I

I I
II

I

III

I

I II
I

I
I

I
I I

I I
II I

I

I IIIII
I

II

I

II
I

I
I

II

I III

J

J
J

J
J

JJ J
J

J J

J

K
K

AA

B

C
C

D
E

F

GG

HHHHH HH

H

H

HHH
H

HH
I

I I
II

I

III

I

I II
I

I
I

I
I I

I I
II I

I

I IIIII
I

II

I

II
I

I
I

II

I III

J

J
J

J
J

JJ J
J

J J

J

K
K

AA

B

C
C

D
E

F

GG

HHHHH HH

H

H

HHH
H

HH
I

I I
II

I

III

I

I II
I

I
I

I
I I

I I
II I

I

I IIIII
I

II

I

II
I

I
I

II

I III

J

J
J

J
J

JJ J
J

J J

J

K
K

AA

B

C
C

D
E

F

GG

HHHHH HH

H

H

HHH
H

HH
I

I I
II

I

III

I

I II
I

I
I

I
I I

I I
II I

I

I IIIII
I

II

I

II
I

I
I

II

I III

J

J
J

J
J

JJ J
J

J J

J

K
K

AA

B

C
C

D
E

F

GG

HHHHH HH

H

H

HHH
H

HH
I

I I
II

I

III

I

I II
I

I
I

I
I I

I I
II I

I

I IIIII
I

II

I

II
I

I
I

II

I III

J

J
J

J
J

JJ J
J

J J

J

K
K

AA

B

C
C

D
E

F

GG

HHHHH HH

H

H

HHH
H

HH
I

I I
II

I

III

I

I II
I

I
I

I
I I

I I
II I

I

I IIIII
I

II

I

II
I

I
I

II

I III

J

J
J

J
J

JJ J
J

J J

J

K
K

AA

B

C
C

D
E

F

GG

HHHHH HH

H

H

HHH
H

HH
I

I I
II

I

III

I

I II
I

I
I

I
I I

I I
II I

I

I IIIII
I

II

I

II
I

I
I

II

I III

J

J
J

J
J

JJ J
J

J J

J

K
K

AA

B

C
C

D
E

F

GG

HHHHH HH

H

H

HHH
HH

I

I I
II

I

III

I

I II
I

I
I

I
I I

I I
II I

I

I IIIII
I

II

I

II
I

I
I

II

I III

J

J
J

J
J

JJ J
J

J J

J

K
K

AA

B

C
C

D
E

F

GG

HHHHH HH

H

H

H

HH
I

I
II

I

III

I

I II
I

I
I

I
I I

I
II I

IIIII
I

II

I

II
I

I
I

II

I I
I

J

J
J

J
J

JJ J
J

J

J

K
K

A

C
C

GG

HH
H

HH

H

H

H

II

I

I

I

I
I

I
I I II I

IIII
I

II
II

I
I

I

I

I

J

J

J

JJ

JK

X
X

X

3 nodes

2 nodes

1 node

A
AA

A
A

AA

A
A

B

B

B

B

C

C

DD

E

E

E

E

F

F

G

H

H

I

J

J
JJ

K

K

K

L

M

N

O
O

O

O

O

OO
O

O

O O

O
O

O

O
O

O

P

P P

P

A

A

A
A

AA

A
A

B

B

B

B

C

C

DD

E

E

E

E

F

F

G

H

H

I

J

J
JJ

K

K

K

L

M

N

O
O

O

O

O

OO
O

O

O O

O
O

O

O
O

O

P

P P

P

A

A

A
A

AA

A
A

B

B

B

B

C

C

DD

E

E

E

E

F

F

G

H

H

I

J

J
JJ

K

K

K

L

M

N

O
O

O

O

O

OO
O

O

O O

O
O

O

O
O

O

P

P P

P

A

A

A
A

AA

A
A

B

B

B

B

C

C

DD

E

E

E

E

F

F

G

H

H

I

J

J
JJ

K

K

K

L

M

N

O
O

O

O

O

OO
O

O

O O

O
O

O

O
O

O

P

P P

P

A

A

A
A

AA

A
A

B

B

B

B

C

C

DD

E

E

E

E

F

F

G

H

H

I

J

J
JJ

K

K

K

L

M

N

O
O

O

O

O

OO
O

O

O O

O
O

O

O
O

O

P

P P

P

A

A

A
A

AA

A
A

B

B

B

B

C

C

DD

E

E

E

E

F

F

G

H

H

I

J

J
JJ

K

K

K

L

M

N

O
O

O

O

O

OO
O

O

O O

O
O

O

O
O

O

P

P P

P

A

A

A
A

AA

A
A

B

B

B

B

C

C

DD

E

E

E

E

F

F

G

H

H

I

J

J
JJ

K

K

K

L

M

N

O
O

O

O

O

OO
O

O

O O

O
O

O

O
O

O

P

P P

P

A

A

A
A

AA

A
A

B

B

B

B

C

C

DD

E

E

E

E

F

F

G

H

H

I

J

JJ

K

K

K

L

M

N

O
O

O

O

O

OO
O

O

O O

O
O

O

O
O

O

P

P P

P

A

A

A
A

AA

A
A

B

B

B

B

C

C

DD

E

E

E

E

F

F

G

H

H

J

J

K

K

L

M

N

O
O

O

O

OO
O

O

O OO

O

O

O

P

P P

P

A

A

A
A

B

B

C

C

DD

E

E

E

F

F

H

H

J

J

K

K

L

O
O

O

O

O

O

OO

P

P

X
X

X

3 nodes

2 nodes

1 node

Figure 7: World view of level-1 clusters (60 msec threshold),
and United States view of level-2 clusters (20 msec threshold).
Each unique, non-singleton cluster is assigned a letter; the size
of the letter corresponds to collocated nodes in the same cluster.

The world map shows that Coral found natural divi-
sions between sets of nodes along geospatial lines at a 60
msec threshold. The map shows several distinct regions,
the most dramatic being the Eastern U.S. (70 nodes), the
Western U.S. (37 nodes), and Europe (19 nodes). The
close correlation between network and physical distance
suggests that speed-of-light delays dominate round-trip-
times. Note that, as we did not plot singleton clusters, the
map does not include three Asian nodes (in Japan, Taiwan,
and the Philippines, respectively).

The United States map shows level-2 clusters again
roughly separated by physical locality. The map shows
16 distinct clusters; obvious clusters include California
(22 nodes), the Pacific Northwest (9 nodes), the South, the
Midwest, etc. The Northeast Corridor cluster contains 29
nodes, stretching from North Carolina to Massachusetts.
One interesting aspect of this map is the three separate,
non-singleton clusters in the San Francisco Bay Area.
Close examination of individual RTTs between these sites
shows widely varying latencies; Coral clustered correctly
given the underlying network topology.

6.4 Load Balancing

Finally, Figure 8 shows the extent to which a DSHT bal-
ances requests to the same key ID. In this experiment,
we ran 3 nodes on each of the earlier hosts for a to-
tal of 494 nodes. We configured the system as a single

 0

 12

 24

 36

 48

 60

 72

 84

near far

R
eq

ue
st

s
/ M

in
ut

e

Distance to Hotspot

Figure 8: The total number of put RPCs hitting each Coral node
per minute, sorted by distance from node ID to target key.

level-0 cluster. At the same time, all PlanetLab nodes be-
gan to issue back-to-back put /get requests at their max-
imum (non-concurrent) rates. All operations referenced
the same key; the values stored during put requests were
randomized. On average, each node issued 400 put /get
operation pairs per second, for a total of approximately
12 million put /get requests per minute, although only a
fraction hit the network. Once a node is storing a key,
get requests are satisfied locally. Once it is loaded, each
node only allows the leakage rate β RPCs “through” it per
minute.

The graphs show the number of put RPCs that hit each
node in steady-state, sorted by the XOR distance of the
node’s ID to the key. During the first minute, the clos-
est node received 106 put RPCs. In the second minute,
as shown in Figure 8, the system reached steady-state
with the closest node receiving 83 put RPCs per minute.
Recall that our equation in Section 4.2 predicts that it
should receive (β · log n) = 108 RPCs per minute. The
plot strongly emphasizes the efficacy of the leakage rate
β = 12, as the number of RPCs received by the majority
of nodes is a low multiple of 12.

No nodes on the far side of the graph received any
RPCs. Coral’s routing algorithm explains this condition:
these nodes begin routing by flipping their ID’s most-
significant bit to match the key’s, and they subsequently
contact a node on the near side. We have omitted the graph
of get RPCs: During the first minute, the most-loaded
node received 27 RPCs; subsequently, the key was widely
distributed and the system quiesced.

7 Related work

CoralCDN builds on previous work in peer-to-peer sys-
tems and web-based content delivery.

11

7.1 DHTs and directory services

A distributed hash table (DHT) exposes two basic func-
tions to the application: put(key , value) stores a value
at the specified key ID; get(key) returns this stored value,
just as in a normal hash table. Most DHTs use a key-based
routing layer—such as CAN [25], Chord [31], Kadem-
lia [17], Pastry [26], or Tapestry [35]—and store keys on
the node whose ID is closest to the key. Keys must be
well distributed to balance load among nodes. DHTs often
replicate multiply-fetched key/value pairs for scalability,
e.g., by having peers replicate the pair onto the second-to-
last peer they contacted as part of a get request.

DHTs can act either as actual data stores or merely
as directory services storing pointers. CFS [5] and
PAST [27] take the former approach to build a distri-
buted file system: They require true read/write consis-
tency among operations, where writes should atomically
replace previously-stored values, not modify them.

Using the network as a directory service, Tapestry [35]
and Coral relax the consistency of operations in the net-
work. To put a key, Tapestry routes along fast hops be-
tween peers, placing at each peer a pointer back to the
sending node, until it reaches the node closest to the
key. Nearby nodes routing to the same key are likely
to follow similar paths and discover these cached point-
ers. Coral’s flexible clustering provides similar latency-
optimized lookup and data placement, and its algorithms
prevent multiple stores from forming hot spots. SkipNet
also builds a hierarchy of lookup groups, although it ex-
plicitly groups nodes by domain name to support organi-
zational disconnect [9].

7.2 Web caching and content distribution

Web caching systems fit within a large class of CDNs that
handle high demand through diverse replication.

Prior to the recent interest in peer-to-peer systems, sev-
eral projects proposed cooperative Web caching [2, 7, 8,
16]. These systems either multicast queries or require
that caches know some or all other servers, which wors-
ens their scalability, fault-tolerance, and susceptibility to
hot spots. Although the cache hit rate of cooperative web
caching increases only to a certain level, corresponding to
a moderate population size [34], highly-scalable coopera-
tive systems can still increase the total system throughput
by reducing server-side load.

Several projects have considered peer-to-peer overlays
for web caching, although all such systems only benefit
participating clients and thus require widespread adoption
to reduce server load. Stading et al. use a DHT to cache
replicas [29], and PROOFS uses a randomized overlay to
distribute popular content [30]. Both systems focus solely
on mitigating flash crowds and suffer from high request

latency. Squirrel proposes web caching on a traditional
DHT, although only for organization-wide networks [10].
Squirrel reported poor load-balancing when the system
stored pointers in the DHT. We attribute this to the DHT’s
inability to handle too many values for the same key—
Squirrel only stored 4 pointers per object—while Coral-
CDN references many more proxies by storing different
sets of pointers on different nodes. SCAN examined repli-
cation policies for data disseminated through a multicast
tree from a DHT deployed at ISPs [3].

Akamai [1] and other commercial CDNs use DNS redi-
rection to reroute client requests to local clusters of ma-
chines, having built detailed maps of the Internet through
a combination of BGP feeds and their own measurements,
such as traceroutes from numerous vantage points [28].
Then, upon reaching a cluster of collocated machines,
hashing schemes [11, 32] map requests to specific ma-
chines to increase capacity. These systems require de-
ploying large numbers of highly provisioned servers, and
typically result in very good performance (both latency
and throughput) for customers.

Such centrally-managed CDNs appear to offer two ben-
efits over CoralCDN. (1) CoralCDN’s network measure-
ments, via traceroute-like probing of DNS clients, are
somewhat constrained in comparison. CoralCDN nodes
do not have BGP feeds and are under tight latency con-
straints to avoid delaying DNS replies while probing. Ad-
ditionally, Coral’s design assumes that no single node
even knows the identity of all other nodes in the system,
let alone their precise network location. Yet, if many peo-
ple adopt the system, it will build up a rich database of
neighboring networks. (2) CoralCDN offers less aggre-
gate storage capacity, as cache management is completely
localized. But, it is designed for a much larger number
of machines and vantage points: CoralCDN may provide
better performance for small organizations hosting nodes,
as it is not economically efficient for commercial CDNs
to deploy machines behind most bottleneck links.

More recently, CoDeeN has provided users with a set
of open web proxies [23]. Users can reconfigure their
browsers to use a CoDeeN proxy and subsequently en-
joy better performance. The system has been deployed,
and anecdotal evidence suggests it is very successful at
distributing content efficiently. Earlier simulation results
show that certain policies should achieve high system
throughput and low request latency [33]. (Specific details
of the deployed system have not yet been published, in-
cluding an Akamai-like service also in development.)

Although CoDeeN gives participating users better per-
formance to most web sites, CoralCDN’s goal is to
gives most users better performance to participating web
sites—namely those whose publishers have “Coralized”
the URLs. The two design points pose somewhat dif-

12

ferent challenges. For instance, CoralCDN takes pains
to greatly minimize the load on under-provisioned origin
servers, while CoDeeN has tighter latency requirements
as it is on the critical path for all web requests. Finally,
while CoDeeN has suffered a number of administrative
headaches, many of these problems do not apply to Coral-
CDN, as, e.g., CoralCDN does not allow POST operations
or SSL tunneling, and it can be barred from accessing par-
ticular sites without affecting users’ browsing experience.

8 Future Work

Security. This paper does not address CoralCDN’s se-
curity issues. Probably the most important issue is en-
suring the integrity of cached data. Given our experience
with spam on the Internet, we should expect that adver-
saries will attempt to replace cached data with advertise-
ments for pornography or prescription drugs. A solution
is future work, but breaks down into three components.

First, honest Coral nodes should not cache invalid
data. A possible solution might include embedding self-
certifying pathnames [20] in Coralized URLs, although
this solution requires server buy-in. Second, Coral nodes
should be able to trace the path that cached data has taken
and exclude data from known bad systems. Third, we
should try to prevent clients from using malicious proxies.
This requires client buy-in, but offers additional incentives
for organizations to run Coral: Recall that a client will ac-
cess a local proxy when one is available, or administrators
can configure a local DNS resolver to always return a spe-
cific Coral instance. Alternatively, “SSL splitting” [15]
provides end-to-end security between clients and servers,
albeit at a higher overhead for the origin servers.

CoralCDN may require some additional abuse-
prevention mechanisms, such as throttling bandwidth
hogs and restricting access to address-authenticated con-
tent [23]. To leverage our redundant resources, we are
considering efficient erasure coding for large-file trans-
fers [18]. For such, we have developed on-the-fly veri-
fication mechanisms to limit malicious proxies’ abilities
to waste a node’s downstream bandwidth [13].

Leveraging the Clustering Abstraction. This paper
presents clustering mainly as a performance optimization
for lookup operations and DNS redirection. However, the
clustering algorithms we use are driven by generic poli-
cies that could allow hierarchy creation based on a variety
of criteria. For example, one could provide a clustering
policy by IP routing block or by AS name, for a simple
mechanism that reflects administrative control and per-
forms well under network partition. Or, Coral’s clusters
could be used to explicitly encode a web-of-trust security
model in the system, especially useful given its standard
open-admissions policy. Then, clusters could easily repre-
sent trust relationships, allowing lookups to resolve at the

most trustworthy hosts. Clustering may prove to be a very
useful abstraction for building interesting applications.

Multi-cast Tree Formation. CoralCDN may transmit
multiple requests to an origin HTTP server at the begin-
ning of a flash crowd. This is caused by a race condition
at the key’s closest node, which we could eliminate by
extending store transactions to provide return status in-
formation (like test-and-set in shared-memory systems).
Similar extensions to store semantics may be useful for
balancing its dynamically-formed dissemination trees.

Handling Heterogeneous Proxies. We should consider
the heterogeneity of proxies when performing DNS redi-
rection and intra-Coral HTTP fetches. We might use some
type of feedback-based allocation policy, as proxies can
return their current load and bandwidth availability, given
that they are already probed to determine liveness.

Deployment and Scalability Studies. We are planning
an initial deployment of CoralCDN as a long-lived Planet-
Lab port 53 (DNS) service. In doing so, we hope to gather
measurements from a large, active client population, to
better quantify CoralCDN’s scalability and effectiveness:
Given our client-transparency, achieving wide-spread use
is much easier than with most peer-to-peer systems.

9 Conclusions

CoralCDN is a peer-to-peer web-content distribution net-
work that harnesses people’s willingness to redistribute
data they themselves find useful. It indexes cached web
content with a new distributed storage abstraction called a
DSHT. DSHTs map a key to multiple values and can scale
to many stores of the same key without hot-spot conges-
tion. Coral successfully clusters nodes by network diam-
eter, ensuring that nearby replicas of data can be located
and retrieved without querying more distant nodes. Fi-
nally, a peer-to-peer DNS layer redirects clients to nearby
CoralProxies, allowing unmodified web browsers to ben-
efit from CoralCDN, and more importantly, to avoid over-
loading origin servers.

Measurements of CoralCDN demonstrate that it al-
lows under-provisioned web sites to achieve dramatically
higher capacity. A web server behind a DSL line expe-
riences hardly any load when hit by a flash crowd with
a sustained aggregate transfer rate that is two orders of
magnitude greater than its bandwidth. Moreover, Coral’s
clustering mechanism forms qualitatively sensible geo-
graphic clusters and provides quantitatively better perfor-
mance than locality-unaware systems.

We have made CoralCDN freely available, so that even
people with slow connections can publish web sites whose
capacity grows automatically with popularity. Please visit
http://www.scs.cs.nyu.edu/coral/.

13

Acknowledgments. We are grateful to Vijay Karam-
cheti for early conversations that helped shape this work.
We thank David Andersen, Nick Feamster, Daniel Gif-
fin, Robert Grimm, and our shepherd, Marvin Theimer,
for their helpful feedback on drafts of this paper. Petar
Maymounkov and Max Krohn provided access to Kadem-
lia data structure and HTTP parsing code, respectively.
We thank the PlanetLab support team for allowing us
the use of UDP port 53 (DNS), despite the additional
hassle this caused them. Coral is part of project IRIS
(http://project-iris.net/), supported by the
NSF under Cooperative Agreement No. ANI-0225660.
David Mazières is supported by an Alfred P. Sloan Re-
search Fellowship. Michael Freedman is supported by an
NDSEG Fellowship.

References
[1] Akamai Technologies, Inc. http://www.akamai.com/, 2004.

[2] A. Chankhunthod, P. Danzig, C. Neerdaels, M. Schwartz, and
K. Worrell. A hierarchical internet object cache. In USENIX, Jan
1996.

[3] Y. Chen, R. Katz, and J. Kubiatowicz. SCAN: A dynamic, scal-
able, and efficient content distribution network. In Proceedings
of the International Conference on Pervasive Computing, Zurich,
Switzerland, Aug 2002.

[4] M. Crawford. RFC 2672: Non-terminal DNS name redirection,
Aug 1999.

[5] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and Ion Stoica.
Wide-area cooperative storage with CFS. In SOSP, Banff, Canada,
Oct 2001.

[6] Digital Island, Inc. http://www.digitalisland.com/, 2004.

[7] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: a
scalable wide-area web-cache sharing protocol. Technical Report
1361, CS Dept, U. Wisconson, Madison, Feb 1998.

[8] S. Gadde, J. Chase, and M. Rabinovich. A taste of crispy squid. In
Workshop on Internet Server Perf., Madison, WI, Jun 1998.

[9] N. Harvey, M. Jones, S. Saroiu, M. Theimer, and A. Wolman.
Skipnet: A scalable overlay network with practical locality prop-
erties. In USITS, Seattle, WA, Mar 2003.

[10] S. Iyer, A. Rowstron, and P. Druschel. Squirrel: A decentralized,
peer-to-peer web cache. In PODC, Monterey, CA, Jul 2002.

[11] D. Karger, E. Lehman, F. Leighton, M. Levine, D. Lewin, and
R. Panigrahy. Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the World Wide Web.
In STOC, May 1997.

[12] D. Karger, A. Sherman, A. Berkheimer, B. Bogstad, R. Dhanidina,
K. Iwamoto, B. Kim, L. Matkins, and Y. Yerushalmi. Web caching
with consistent hashing. WWW8 / Computer Networks, 31(11–
16):1203–1213, 1999.

[13] M. Krohn, M. J. Freedman, and D. Mazières. On-the-fly verifica-
tion of rateless erasure codes for efficient content distribution. In
IEEE Symp. on Security and Privacy, Oakland, CA, May 2004.

[14] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. OceanStore: An architecture for global-
scale persistent storage. In ASPLOS, Cambridge, MA, Nov 2000.

[15] C. Lesniewski-Laas and M. F. Kaashoek. SSL splitting: Securely
serving data from untrusted caches. In USENIX Security, Wash-
ington, D.C., Aug 2003.

[16] R. Malpani, J. Lorch, and D. Berger. Making world wide web
caching servers cooperate. In WWW, Apr 1995.

[17] P. Maymounkov and D. Mazières. Kademlia: A peer-to-peer in-
formation system based on the xor metric. In IPTPS, Cambridge,
MA, Mar 2002.

[18] P. Maymounkov and D. Mazières. Rateless codes and big down-
loads. In IPTPS, Berkeley, CA, Feb 2003.

[19] D. Mazières. A toolkit for user-level file systems. In USENIX,
Boston, MA, Jun 2001.

[20] D. Mazières and M. F. Kaashoek. Escaping the evils of centralized
control with self-certifying pathnames. In ACM SIGOPS European
Workshop, Sep 1998.

[21] Mirror Image Internet. http://www.mirror-image.com/, 2004.

[22] FIPS Publication 180-1: Secure Hash Standard. National Institute
of Standards and Technology (NIST), Apr 1995.

[23] V. Pai, L. Wang, K. Park, R. Pang, and L. Peterson. The dark side
of the web: An open proxy’s view. In HotNets, Cambridge, MA,
Nov 2003.

[24] G. Pfister and V. A. Norton. “hot spot” contention and combining
in multistage interconnection networks. IEEE Trans. on Comput-
ers, 34(10), Oct 1985.

[25] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker.
A scalable content-addressable network. In ACM SIGCOMM, San
Diego, CA, Aug 2001.

[26] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In Proc.
IFIP/ACM Middleware, Nov 2001.

[27] A. Rowstron and P. Druschel. Storage management and caching
in PAST, a large-scale, persistent peer-to-peer storage utility. In
SOSP, Banff, Canada, Oct 2001.

[28] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topolo-
gies with Rocketfuel. In SIGCOMM, Pittsburgh, PA, Aug 2002.

[29] T. Stading, P. Maniatis, and M. Baker. Peer-to-peer caching
schemes to address flash crowds. In IPTPS, Cambridge, MA, Mar
2002.

[30] A. Stavrou, D. Rubenstein, and S. Sahu. A lightweight, robust p2p
system to handle flash crowds. In IEEE ICNP, Paris, France, Nov
2002.

[31] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan. Chord: A scalable peer-to-peer
lookup protocol for internet applications. In IEEE/ACM Trans. on
Networking, 2002.

[32] D. Thaler and C. Ravishankar. Using name-based mappings to
increase hit rates. IEEE/ACM Trans. on Networking, 6(1):1–14,
1998.

[33] L. Wang, V. Pai, and L. Peterson. The effectiveness of request
redirection on cdn robustness. In OSDI, Boston, MA, Dec 2002.

[34] A. Wolman, G. Voelker, N. Sharma, N. Cardwell, A. Karlin, and
H. Levy. On the scale and performance of cooperative web proxy
caching. In SOSP, Kiawah Island, SC, Dec 1999.

[35] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and J. Ku-
biatowicz. Tapestry: A resilient global-scale overlay for service
deployment. IEEE J. Selected Areas in Communications, 2003.

14

