
Implementing Remote Procedure Calls
ANDREW D. BIRRELL and BRUCE JAY NELSON
Xerox Palo Alto Research Center

Remote procedure calls (RPC) appear to be a useful paradig m for providing communication across a
network between programs written in a high-level language. This paper describes a package providing
a remote procedure call facility, the options that face the designer of such a package, and the decisions
~we made. We describe the overall structure of our RPC mechanism, our facilities for binding RPC
clients, the transport level communication protocol, and some performance measurements. We include
descriptioro~ of some optimizations used to achieve high performance and to minimize the load on
server machines that have many clients.

CR Categories and Subject Descriptors: C.2.2 [Computer -Communica t ion Networks] : Network
Protocols--protocol architecture; C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems-distributed applications, network operating systems; D.4.4 [Opera t ing Systems]: Communi-
cations Management--message sending, network communication; D.4.7[Operatiug Systems]: Or-
ganization and Design--distributed systems

General Terms: Design, Experimentation, Performance, Security

Additional Keywords and Phrases: Remote procedure calls, transport layer protocols, distributed
naming and binding, inter-process communication, performance of communication protocols.

1. INTRODUCTION

1.1 Background
The idea of remote procedure calls (hereinafter called RPC) is quite simple. It is
based on the observation that procedure calls are a well-known and well-
understood mechanism for transfer of control and data within a program running
on a single computer. Therefore, it is proposed that this same mechanism be
extended to provide for transfer of control and data across a communication
network. When a remote procedure is invoked, the calling environment is
suspended, the parameters are passed across the network to the environment
where the procedure is to execute (which we will refer to as the callee), and the
desired procedure is executed there. When the procedure finishes and produces
its results, the results are passed backed to the calling environment, where
execution resumes as if returning from a simple single-machine call. While the
calling environment is suspended, other processes on that machine may (possibly)

Authors' address: Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1984 ACM 0734-2071/84/0200-0039 $00.75

ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984, Pages 39-59

40 • A.D. Birrell and B. J. Nelson

still execute (depending on the details of the parallelism of that environment and
the RPC implementation).

There are many attractive aspects to this idea. One is clean and simple
semantics: these should make it easier to build distributed computations, and to
get them right. Another is efficiency: procedure calls seem simple enough for the
communication to be quite rapid. A third is generality: in singie-machine com-
putations, procedures are often the most important mechanism for communica-
tion between parts of the algorithm.

The idea of RPC has been around for many years. It has been discussed in the
public literature many times since at least as far back as 1976 [15]. Nelson's
doctoral dissertation [13] is an extensive examination of the design possibilities
for an RPC system and has references to much of the previous work on RPC.
However, full-scale implementations of RPC have been rarer than paper designs.
Notable recent efforts include Courier in the Xerox NS family of protocols [4],
and current work at MIT [10].

This paper results from the construction of an RPC facility for the Cedar
project. We felt, because of earlier work (particularly Nelson's thesis and asso-
ciated experiments), that we understood the choices the designer of an RPC
facility must make. Our task was to make the choices in light of our particular
aims and environment. In practice, we found that several areas were inadequately
understood, and we produced a system whose design has several novel aspects.
Major issues facing the designer of an RPC facility include: the precise semantics
of a call in the presence of machine and communication failures; the semantics
of address-containing arguments in the (possible) absence of a shared address
space; integration of remote calls into existing (or future) programming systems;
binding (how a caller determines the location and identity of the callee); suitable
protocols for transfer of data and control between caller and callee; and how to
provide data integrity and security (if desired) in an open communication
network. In building our RPC package we addressed each of these issues, but it
not possible to describe all of them in suitable depth in a single paper. This paper
includes a discussion of the issues and our major decisions about them, and
describes the overall structure of our solution. We also describe in some detail
our binding mechanism and our transport level communication protocol. We
plan to produce subsequent papers describing our facilities for encryption-based
security, and providing more information about the manufacture of the stub
modules (which are responsible for the interpretation of arguments and results
of RPC calls) and our experiences with practical use of this facility.

1.2 Environment

The remote-procedure-call package we have built was developed primarily for
use within the Cedar programming environment, communicating across the
Xerox research internetwork. In building such a package, some characteristics of
the environment inevitably have an impact on the design, so the environment is
summarized here.

Cedar [6] is a large project concerned with developing a programming environ-
ment that is powerful and convenient for the building of experimental programs
and systems. There is an emphasis on uniform, highly interactive user interfaces,
and ease of construction and debugging of programs. Cedar is designed to be used
ACM Transactions on Computer Systems, Vol. 2, No. I, February 1984

Implementing Remote Procedure Calls • 41

on single-user workstations, although it is also used for the construction of
servers (shared computers providing common services, accessible through the
communication network).

Most of the computers used for Cedar are Dorados [8]. The Dorado is a very
powerful machine (e.g., a simple Algol-style call and return takes less than 10
microseconds). It is equipped with a 24-bit virtual address space (of 16-bit words)
and an 80-megabyte disk. Think of a Dorado as having the power of an IBM
370/168 processor, dedicated to a single user.

Communication between these computers is typically by means of a 3-megabit-
per-second Ethernet [11]. {Some computers are on a 10-megabit-per-second
Ethernet [7].) Most of the computers running Cedar are on the same Ethernet,
but some are on different Ethernets elsewhere in our research internetwork. The
internetwork consists of a large number of 3-megabyte and 10-megabyte Ether-
nets (presently about 160) connected by leased telephone and satellite links (at
data rates of between 4800 and 56000 bps). We envisage that our RPC commu-
nication will follow the pattern we have experienced with other protocols: most
communication is on the local Ethernet (so the much lower data rates of the
internet links are not an inconvenience to our users), and the Ethernets are not
overloaded (we very rarely see offered loads above 40 percent of the capacity of
an Ethernet, and 10 percent is typical).

The PUP family of protocols [3] provides uniform access to any computer on
this internetwork. Previous PUP protocols include simple unreliable (but high-
probability) datagram service, and reliable flow-controlled byte streams. Between
two computers on the same Ethernet, the lower level raw Ethernet packet format
is available.

Essentially all programming is in high-level languages. The dominant language
is Mesa [12] (as modified for the purposes of Cedar), although Smalltalk and
InterLisp are also used. There is no assembly language for Dorados.

1.3 Aims

The primary purpose of our RPC project was to make distributed computation
easy. Previously, it was observed within our research community that the con-
struction of communicating programs was a difficult task, undertaken only by
members of a select group of communication experts. Even researchers with
substantial systems experience found it difficult to acquire the specialized exper-
tise required to build distributed systems with existing tools. This seemed
undesirable. We have available to us a very large, very powerful communication
network, numerous powerful computers, and an environment that makes building
programs relatively easy. The existing communication mechanisms appeared to
be a major factor constraining further development of distributed computing.
Our hope is that by providing communication with almost as much ease as local
procedure calls, people will be encouraged to build and experiment with distrib-
uted applications. RPC will, we hope, remove unnecessary difficulties, leaving
only the fundamental difficulties of building distributed systems: timing, inde-
pendent failure of components, and the coexistence of independent execution
environments.

We had two secondary aims that we hoped would support our purpose. We
wanted to make RPC communication highly efficient (within, say, a factor of

ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984

42 • A.D. Birrell and B. J. Nelson

five beyond the necessary transmission times of the network). This seems
important, lest communication become so expensive that application designers
strenuously avoid it. The applications that might otherwise get developed would
be distorted by their desire to avoid communicating. Additionally, we felt that it
was important to make the semantics of the RPC package as powerful as possible,
without loss of simplicity or efficiency. Otherwise, the gains of a single unified
communication paradigm would be lost by requiring application programmers to
build extra mechanisms on top of the RPC package. An important issue in design
is resolving the tension between powerful semantics and efficiency.

Our final major aim was to provide secure communication with RPC. None of
the previously implemented protocols had any provision for protecting the data
in transit on our networks. This was true even to the extent that passwords were
transmitted as clear-text. Our belief was that research on the protocols and
mechanisms for secure communication across an open network had reached a
stage where it was reasonable and desirable for us to include this protection in
our package. In addition, very few (if any) distributed systems had previously
provided secure end-to-end communication, and it had never been applied to
RPC, so the design might provide useful research insights.

1.4 Fundamental Decisions

It is not an immediate consequence of our aims that we should use procedure
calls as the paradigm for expressing control and data transfers. For example,
message passing might be a plausible alternative. It is our belief that a choice
between these alternatives would not make a major difference in the problems
faced by this design, nor in the solutions adopted. The problems of reliable and
efficient transmission of a message and of its possible reply are quite similar to
the problems encountered for remote procedure calls. The problems of passing
arguments and results, and of network security, are essentialy unchanged. The
overriding consideration that made us choose procedure calls was that they were
the major control and data transfer mechanism imbedded in our major language,
Mesa.

One might also consider using a more parallel paradigm for our communication,
such as some form of remote fork. Since our language already includes a construct
for forking parallel computations, we could have chosen this as the point at which
to add communication semantics. Again, this would not have changed the major
design problems significantly.

We discarded the possibility of emulating some form of shared address space
among the computers. Previous work has shown that with sufficient care mod-
erate efficiency can be achieved in doing this [14]. We do not know whether an
approach employing shared addresses is feasible, but two potentially major
diffÉculties spring to mind: first, whether the representation of remote addresses
can be integrated into our programming languages (and possibly the underlying
machine architecture) without undue upheaval; second, whether acceptable effi-
ciency can be achieved. For example, a host in the PUP internet is represented
by a 16-bit address, so a naive implementation of a shared address space would
extend the width of language addresses by 16-bits. On the other hand, it is
possible that careful use of the address-mapping mechanisms of our virtual
memory hardware could allow shared address space without changing the address
ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984

Implementing Remote Procedure Calls • 43

width. Even on our 10 megabit Ethernets, the minimum average round trip time
for a packet exchange is 120 microseconds [7], so the most likely way to approach
this would be to use some form of paging system. In summary, a shared address
space between participants in RPC might be feasible, but since we were not
willing to undertake that research our subsequent design assumes the absence of
shared addresses. Our intuition is that with our hardware the cost of a shared
address space would exceed the additional benefits.

A principle that we used several times in making design choices is that the
semantics of remote procedure calls should be as close as possible to those of
local (single-machine) procedure calls. This principle seems attractive as a way
of ensuring that the RPC facility is easy to use, particularly for programmers
familiar with single-machine use of our languages and packages. Violation of this
principle seemed likely to lead us into the complexities that have made previous
communication packages and protocols difficult to use. This principle has occa-
sionally caused us to deviate from designs that would seem attractive to those
more experienced in distributed computing. For example, we chose to have no
time-out mechanism limiting the duration of a remote call (in the absence of
machine or communication failures), whereas most communication packages
consider this a worthwhile feature. Our argument is that local procedure calls
have no time-out mechanism, and our languages include mechanisms to abort an
activity as part of the parallel processing mechanism. Designing a new time-out
arrangement just for RPC would needlessly complicate the programmer's world.
Similarly, we chose the building semantics described below (based closely on the
existing Cedar mechanisms) in preference to the ones presented in Nelson's
thesis [13].

1.5 Structure

The program structure we use for RPC is similar to that proposed in Nelson's
thesis. It is based on the concept of stubs. When making a remote call, five pieces
of program are involved: the user, the user-stub, the RPC communications
package (known as RPCRuntime), the server-stub, and the server. Their relatidn-
ship is shown in Figure 1. The user, the user-stub, and one instance of RPCRun-
time execute in the caller machine; the server, the server-stub and another
instance of RPCRuntime execute in the callee machine. When the user wishes
to make a remote call, it actually makes a perfectly normal local call which
invokes a corresponding procedure in the user-stub. The user-stub is responsible
for placing a specification of the target procedure and the arguments into one or
more packets and asking the RPCRuntime to transmit these reliably to the callee
machine. On receipt of these packets, the RPCRuntime in the callee machine
passes them to the server-stub. The server-stub unpacks them and again makes
a perfectly normal local call, which invokes the appropriate procedure in the
server. Meanwhile, the calling process in the caller machine is suspended awaiting
a result packet. When the call in the server completes, it returns to the server-
stub and the results are passed back to the suspended process in the caller
machine. There they are unpacked and the user-stub returns them to the user.
RPCRuntime is responsible for retransmissions, acknowledgments, packet rout-
ing, and encryption. Apart from the effects of multimachine binding and of
machine or communication failures, the call happens just as if the user had

ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984

44 • A .D . Birrell and B. J. Nelson

Caller machine Network Callee machine

User User-stub RPCRuntime

importer exporter

interface

transmit

,5
wait

,5
receive

Call packet

/ Result packet

RPCRuntime Server-stub Server

receive ~

i r--nt
lr,,um

importer exporter

interface

transmit

Fig. 1. The components of the system, and their interactions for a simple call.

invoked the procedure in the server directly. Indeed, if the user and server code
were brought into a single machine and bound directly together without the
stubs, the program would still work.

RPCRuntime is a standard part of the Cedar system. The user and server are
written as part of the distributed application. But the user-stub and server-stub
are automatically generated, by a program called Lupine. This generation is
specified by use of Mesa interface modules. These are the basis of the Mesa (and
Cedar) separate compilation and binding mechanism [9]. An interface module is
mainly a list of procedure names, together with the types of their arguments and
results. This is sufficient information for the caller and callee to independently
perform compile-time type checking and to generate appropriate calling se-
quences. A program module that implements procedures in an interface is said to
export that interface. A program module calling procedures from an interface is
said to import that interface. When writing a distributed application, a program-
mer first writes an interface module. Then he can write the user code that imports
that interface and the server code that exports the interface. He also presents
the interface to Lupine, which generates the user-stub, (that exports the interface)
and the server-stub {that imports the interface). When binding the programs on
the 'caller machine, the user is bound to the user-stub. On the callee machine,
the server-stub is bound to the server.

Thus, the programmer does not need to build detailed communication-related
code. After designing the interface, he need only write the user and server code.
Lupine is responsible for generating the code for packing and unpacking argu-
ments and results (and other details of parameter/result semantics), and for
dispatching to the correct procedure for an incoming call in the server-stub.
RPCRuntime is responsible for packet-level communications. The programmer
must avoid specifying arguments or results that are incompatible with the lack
of shared address space. (Lupine checks this avoidance.) The programmer must
also take steps to invoke the intermachine binding described in Section 2, and to
handle reported machine or communication failures.

2. BINDING
There are two aspects to binding which we consider in turn. First, how does a
client of the binding mechanism specify what he wants to be bound to? Second,
ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984

Implementing Remote Procedure Calls • 45

how does a caller determine the machine address of the callee and specify to the
callee the procedure to be invoked? The first is primarily a question of naming
and the second a question of location.

2.1 Naming

The binding operation offered by our RPC package is to bind an importer of an
interface to an exporter of an interface. After binding, calls made by the importer
invoke procedures implemented by the (remote) exporter. There are two parts to
the name of an interface: the type and the instance. The type is intended to
specify, at some level of abstraction, which interface the caller expects the callee
to implement. The instance is intended to specify which particular implementor
of an abstract interface is desired. For example, the type of an interface might
correspond to the abstraction of "mail server," and the instance would correspond
to some particular mail server selected from many. A reasonable default for the
type of an interface might be a name derived from the name of the Mesa interface
module. Fundamentally, the semantics of an interface name are not dictated by
the RPC package--they are an agreement between the exporter and the importer,
not fully enforceable by the RPC package. However, the means by which an
exporter uses the interface name to locate an exporter are dictated by the RPC
package, and these we now describe.

2.2 Locating an Appropriate Exporter

We use the Grapevine distributed database [1] for our RPC binding. The major
attraction of using Grapevine is that it is widely and reliably available. Grapevine
is distributed across multiple servers strategically located in our internet topology,
and is configured to maintain at least three copies of each database entry. Since
the Grapevine servers themselves are highly reliable and the data is replicated,
it is extremely rare for us to be unable to look up a database entry. There are
alternatives to using such a database, but we find them unsatisfactory. For
example, we could include in our application programs the network addresses of
the machine with which they wish to communicate: this would bind to a particular
machine much too early for most applications. Alternatively, we could use some
form of broadcast protocol to locate the desired machine: this would sometimes
be acceptable, but as a general mechanism would cause too much interference
with innocent bystanders, and would not be convenient for binding to machines
not on the same local network.

Grapevine's database consists of a set of entries, each keyed by a character
string known as a Grapevine RName. There are two varieties of entries: individ-
ua/s and groups. Grapevine keeps several items of information for each database
entry, but the RPC package is concerned with only two: for each individual there
is a connect-site, which is a network address, and for each group there is a
member-list, which is a list of RNames. The RPC package maintains two entries
in the Grapevine database for each interface name: one for each type and one for
each instance; so the type and instance are both Grapevine RNames. The
database entry for the instance is a Grapevine individual whose connect-site is a
network address, specifically, the network address of the machine on which that
instance was last exported. The database entry for the type is a Grapevine group
whose members are the Grapevine RNames of the instances of that type which

ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984

46 • A.D. Birrell and B. J. Nelson

have been exported. For example, if the remote interface with type
FileAccess.Alpine and instance Ebbets.Alpine has been exported by a server
running at network address 3 # 2 2 # , and the remote interface with type
FileAccess.Alpine and instance Luther.Alpine has been exported by a server
running at network address 3 # 2 7 6 # , then the members of the Grapevine
group FileAccess.Alpine would include Ebbets.Alpine and Luther.Alpine. The
Grapevine individual Ebbets. Alpine would have 3#22# as its connect-site
and Luther.Alpine would have 3#276#.

When an exporter wishes to make his interface available to remote clients, the
server code calls the server-stub which in turn calls a procedure, Exportlnterface,
in the RPCRuntime. Exportlnterface is given the interface name (type and
instance) together with a procedure (known as the dispatcher) implemented in
the server-stub which will handle incoming calls for the interface. Exportlnterface
calls Grapevine and ensures that the instance is one of the members of the
Grapevine group which is the type, and that the connect-site of (the Grapevine
individual which is) the instance is the network address of the exporting machine.
This may involve updating the database. As an optimization, the database is not
updated if it already contains the correct information--this is usually true:
typically an interface of this name has previously been exported, and typically
from the same network address. For example, to export the interface with type
FileAccess.Alpine and instance Ebbets.Alpine from network address 3 # 2 2 # , the
RPCRuntime would ensure that Ebbets.Alpine in the Grapevine database has
connect-site 3 # 2 2 # and that Ebbets.Alpine is a member of FileAccess.Alpine.
The RPCRuntime then records information about this export in a table main-
tained on the exporting machine. For each currently exported interface, this table
contains the interface name, the dispatcher procedure from the server-stub, and
a 32-bit value that serves as a permanently unique (machine-relative) identifier
of the export. This table is~implemented as an array indexed by a small integer.
The identifier is guaranteed to be permanently unique by the use of successive
values of a 32-bit counter; on start-up this counter is initialized to a one-second
real time clock, and the counter is constrained subsequently to be less than the
current value of that clock. This constrains the rate of calls on Exportlnterface
in a single machine tO an average rate of less than one per second, averaged over
the time since the exporting machine was restarted. The burst rate of such calls
can exceed one per second (see Figure 2).

When an importer wishes to bind to an exporter, the user code calls its user-
stub which in turn calls a procedure, Importlnterface, in the RPCRuntime, giving
it the desired interface type and instance. The RPCRuntime determines the
network address of the exporter (if there is one) by asking Grapevine for the
network address which is the connect-site of the interface instance. The
RPCRuntime then makes a remote procedure call to the RPCRuntimepackage
on that machine asking for the binding information associated with this interface
type and instance. If the specified machine is not currently exporting that
interface this fact is returned to the importing machine and the binding fails. If
the specified machine is currently exporting that interface, then the table of
current exports maintained by its RPCRuntime yields the corresponding unique
identifier; the identifier and the table index are returned to the importing machine
ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984

Implementing Remote Procedure Calls • 47

Caller machine Grapevine Callee machine

User User-stub RPCRuntime

Import[Import[
A,B] --~ A,B]

Record
/ return ~-- result

x~-F[y] ~ F =>3

importer I exporter
interface

- - - - • GetConnect

Bind[A,B]

-~ transmit

Do update
I _ _

Do update
I _ _

- - • Lookup
I

RPCRuntime Server-stub Server

-.-Export[/ Export[

A,B, A, BI
1

Record in
table;

-- SetConnect

-- Addmember
"~ return /

Table
lookup

I

Check UID
in table

- ~ ! 3 =) F -~ x4-F[y]

importer I exporter
interface

Fig. 2. The sequence of events in binding and a subsequent call. The callee machine exports the
remote interface with type A and instance B. The caller machine then imports that interface. We
then show the caller initiating a call to procedure F, which is the third procedure of that interface.
The return is not shown.

and the binding succeeds. The exporter network address, identifier, and table
index are remembered by the user-stub for use in remote calls.

Subsequently, when that user-stub is making a call on the imported remote
interface, the call packet it manufactures contains the unique identifier and table
index of the desired interface, and the entry point number of the desired procedure
relative to the interface. When the RPCRuntime on the callee machine receives
a new call packet it uses the index to look up its table of current exports
(efficiently), verifies that the unique identifier in the packet matches that in the
table, and passes the call packet to the dispatcher procedure specified in the
table.

There are several variants of this binding scheme available to our clients. If
the importer calling Importlnterface specifies only the interface type but no
instance, the RPCRuntime obtains from Grapevine the members of the Grape-
vine group named by the type. The RPCRuntime then obtains the network
address for each of those Grapevine individuals, and tries the addresses in turn
to find some instance that will accept the binding request: this is done efficiently,

ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984

48 • A .D . Birrell and B. J. Nelson

and in an order which tends to locate the closest (most responsive) running
exporter. This allows an importer to become bound to the closest running instance
of a replicated service, where the importer does not care which instance. Of
course, an importer is free to enumerate the instances himself, by enumerating
the members of the group named by the type.

The instance may be a network address constant instead of a Grapevine name.
This would allow the importer to bind to the exporter without any interaction
with Grapevine, at the cost of including an explicit address in the application
programs.

2.3 Discussion

There are some important effects of this scheme. Notice that importing an
interface has no effect on the data structures in the exporting machine; this is
advantageous when building servers that may have hundreds of users, and avoids
problems regarding what the server should do about this information in relation
to subsequent importer crashes. Also, use of the unique identifier scheme means
that bindings are implicitly broken if the exporter crashes and restarts (since the
currency of the identifier is checked on each call). We believe that this implicit
unbinding is the correct semantics: otherwise a user will not be notified of a
crash happening between calls. Finally, note that this scheme allows calls to be
made only on procedures that have been explicitly exported through the RPC
mechanism. An alternate, slightly more efficient scheme would be to issue
importers with the exporter's internal representation of the server-stub dis-
patcher procedure; this we considered undesirable since it would allow unchecked
access to almost any procedure in the server machine and, therefore, would make
it impossible to enforce any protection or security schemes.

The access controls that restrict updates to the Grapevine database have the
effect of restricting the set of users who will be able to export particular interface
names. These are the desired semantics: it should not be possible, for example,
for a random user to claim that his workstation is a mail server and to thereby
be able to intercept my message traffic. In the case of a replicated service, this
access control effect is critical. A client of a replicated service may not know a
priori the names of the instances of the service. If the client wishes to use two-
way authentication to get the assurance that the service is genuine, and if we
wish to avoid using a single password for identifying every instance of the service,
then the client must be able to securely obtain the list of names of the instances
of the service. We can achieve this security by employing a secure protocol when
the client interacts with Grapevine as the interface is being imported. Thus
Grapevine's access controls provide the client's assurance that an instance of the
service is genuine (authorized).

We have allowed several choices for binding time. The most flexible is where
the importer specifies only the type of the interface and not its instance: here
the decision about the interface instance is made dynamically. Next (and most
common) is where the interface instance is an RName, delaying the choice of a
particular exporting machine. Most restrictive is the facility to specify a network
address as an instance, thus binding it to a particular machine at compile time.
We also provide facilities allowing an importer to dynamically instantiate inter-
faces and to import them. A detailed description of how this is done would be
ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984

Implementing Remote Procedure Calls • 49

too complicated for this paper, but in summary it allows an importer to bind his
program to several exporting machines, even when the importer cannot know
statically how many machines he wishes to bind to. This has proved to be useful
in some open-ended multimachine algorithms, such as implementing the manager
of a distributed atomic transaction. We have not allowed binding at a finer grain
than an entire interface. This was not an option we considered, in light of
inutility of this mechanism in the packages and systems we have observed.

3. PACKET-LEVEL TRANSPORT PROTOCOL

3.1 Requirements

The semantics of RPCs can be achieved without designing a specialized packet-
level protocol. For example, we could have built our package using the PUP byte
stream protocol (or the Xerox NS sequenced packet protocol) as our transport
layer. Some of our previous experiments [13] were made using PUP byte streams,
and the Xerox NS "Courier" RPC protocol [4] uses the NS sequenced packet
protocol. Grapevine protocols are essentially similar to remote procedure calls,
and use PUP byte streams. Our measurements [13] and experience with each of
these implementations convinced us that this approach was unsatisfactory. The
particular nature of RPC communication means that there are substantial
performance gains available if one designs and implements a transport protocol
specially for RPC. Our experiments indicated that a performance gain of a factor
of ten might be possible.

An intermediate stance might be tenable: we have never tried the experiment
of using an existing transport protocol and building an implementation of it
specialized for RPC. However, the request-response nature of communication
with RPC is sufficiently unlike the large data transfers for which bytes streams
are usually employed that we do not believe this intermediate position to be
tenable.

One aim we emphasized in our protocol design was minimizing the elapsed
real-time between initiating a call and getting results. With protocols for bulk
data transfer this is not important: most of the time is spent actually transferring
the data. We also strove to minimize the load imposed on a server by substantial
numbers of users. When performing bulk data transfers, it is acceptable to adopt
schemes that lead to a large cost for setting up and taking down connections,
and that require maintenance of substantial state information during a connec-
tion. These are acceptable because the costs are likely to be small relative to the
data transfer itself. This, we believe, is untrue for RPC. We envisage our machines
being able to serve substantial numbers of clients, and it would be unacceptable
to require either a large amount of state information or expensive connection
handshaking.

It is this level of the RPC package that defines the semantics and the guarantees
we give for calls. We guarantee that if the call returns to the user then the
procedure in the server has been invoked precisely once. Otherwise, an exception
is reported to the user and the procedure will have been invoked either once or
not at al l--the user is not told which. If an exception is reported, the user does
not know whether the server has crashed or whether there is a problem in the
communication network. Provided the RPCRuntime on the server machine is

,ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984

50 • A.D. Birrell and B. J. Nelson

still responding, there is no upper bound on how long we will wait for results;
that is, we will abort a call if there is a communication breakdown or a crash but
not if the server code deadlocks or loops. This is identical to the semantics of
local procedure calls.

3.2 Simple Calls

We have tried to make the per call communication particularly efficient for the
situation where all of the arguments will fit in a single packet buffer, as will all
of the results, and where frequent calls are being made. To make a call, the caller
sends a call packet containing a call identifier (discussed below), data specifying
the desired procedure (as described in connection with binding), and the argu-
ments. When the callee machine receives this packet the appropriate procedure
is invoked. When the procedure returns, a result packet containing the same call
identifier, and the results, is sent back to the caller.

The machine that transmits a packet is responsible for retransmitting it until
an acknowledgment is received, in order to compensate for lost packets. However,
the result of a call is sufficient acknowledgment that the call packet was received,
and a call packet is sufficient to acknowledge the result packet of the previous
call made by that process. Thus in a situation where the duration of a call and
the interval between calls are each less than the transmission interval, we
transmit precisely two packets per ~all (one in each direction). If the call lasts
longer or there is a longer interval between calls, up to two additional packets
may be sent (the retransmission and an explicit acknowledgment packet); we
believe this to be acceptable because in those situations it is clear that commu-
nication costs are no longer the limiting factor on performance.

The call identifier serves two purposes. It allows the caller to determine that
the result packet is truly the result of his current call (not, for example, a much
delayed result of some previous call), and it allows the callee to eliminate duplicate
call packets (caused by retransmissions, for example). The call identifier consists
of the calling machine identifier (which is permanent and globally unique), a
machine-relative identifier of the calling process, and a sequence number. We
term the pair [machine identifier, process] an activity. The important property of
an activity is that each activity has at most one outstanding remote call at any
t ime-- i t will not initiate a new call until it has received the results of the
preceding call. The call sequence number must be monotonic for each activity
(but not necessarily sequential). The RPCRuntime on a callee machine maintains
a table giving the sequence number of the last call invoked by each calling
activity. When a call packet is received, its call identifier is looked up in this
table. The call packet can be discarded as a duplicate (possibly after acknowledg-
ment) unless its sequence number is greater than that given in this table. Figure
3 shows the packets transmitted in simple calls.

It is interesting to compare this arrangement with connection establishment,
maintenance and termination in more heavyweight transport protocols. In our
protocol, we think of a connection as the shared state information between an
activity on a calling machine and the RPCRuntime package on the server machine
accepting calls from that activity. We require no special connection establishment
ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984

Implementing Remote Procedure Calls • 51

Caller machine

User RPC + Stub

call ~ send callpkt

await ack

or result

~ . - - return

Callee machine

CalI[CalIID, dispatcherHint,
dispatcherlD, procedure, arguments] \

/ Result[CalllD, results]

RPC + Stub Server

invoke proc - ~ do call

send results mtum

Fig. 3. T he packets t r a n s m i t t e d dur ing a s imple call.

protocol (compared with the two-packet handshake required in many other
protocols); receipt of a call packet from a previously unknown activity is sufficient
to create the connection implicitly. When the connection is active (when there
is a call being handled, or when the last result packet of the call has not yet been
acknowledged), both ends maintain significant amounts of state information.
However, when the connection is idle the only state information in the server
machine is the entry in its table of sequence numbers. A caller has minimal state
information when a connection is idle: a single machine-wide counter is sufficient.
When initiating a new call, its sequence number is just the next value of this
counter. This is why sequence numbers in the calls from an activity are required
only to be monotonic, not sequential. When a connection is idle, no process in
either machine is concerned with the connection. No communications (such as
"pinging" packet exchanges) are required to maintain idle connections. We have
no explicit connection termination protocol. If a connection is idle, the server
machine may discard its state information after an interval, when there is no
longer any danger of receiving retransmitted call packets (say, after five minutes),
and it can do so without interacting with the caller machine. This scheme
provides the guarantees of traditional connection-oriented protocols without the
costs. Note, however, that we rely on the unique identifier we introduced when
doing remote binding. Without this identifier we would be unable to detect
duplicates if a server crashed and then restarted while a caller was still retrans-
mitting a call packet (not very likely, but just plausible). We are also assuming
that the call sequence number from an activity does not repeat even if the calling
machine is restarted (otherwise a call from the restarted machine might be
eliminated as a duplicate). In practice, we achieve this as a side effect of a 32-bit
conversation identifier which we use in connection with secure calls. For non-
secure calls, a conversation identifier may be thought of as a permanently unique
identifier which distinguishes incarnations of a calling machine. The conversation
identifier is passed with the call sequence number on every call. We generate
conversation identifiers based on a 32-bit clock maintained by every machine
(initialized from network time servers when a machine restarts).

From experience with previous systems, we anticipate that this light-weight
connection management will be important in building large and busy distributed
systems.

ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984

52 • A.D. Birrell and B. J. Nelson

3.3 Complicated Calls

As mentioned above, the transmitter of a packet is responsible for retransmitting
it until it is acknowledged. In doing so, the packet is modified to request an
explicit acknowledgment. This handles lost packets, long duration calls, and long
gaps between calls. When the caller is satisfied with its acknowledgments, the
caller process waits for the result packet. While waiting, however, the caller
periodically sends a probe packet to the callee, which the callee is expected to
acknowledge. This allows the caller to notice if the callee has crashed or if there
is some serious communication failure, and to notify the user of an exception.
Provided these probes continue to be acknowledged the caller will wait indefi-
nitely, happy in the knowledge that the callee is (or claims to be) working on the
call. In our implementation the first of these probes is issued after a delay of
slightly more than the approximate round-trip time between the machines. The
interval between probes increases gradually, until, after about 10 minutes, the
probes are being sent once every five minutes. Each probe is subject to retrans-
mission strategies similar to those used for other packets of the call. So if there
is a communication failure, the caller will be told about it fairly soon, relative to
the total time the caller has been waiting for the result of the call. Note that this
will only detect failures in the communication levels: it will not detect if the
callee has deadlocked while working on the call. This is in keeping with our
principle of making RPC semantics similar to local procedure call semantics. We
have language facilities available for watching a process and aborting it if this
seems appropriate; these facilities are just as suitable for a process waiting on a
remote call.

A possible alternative strategy for retransn~ssions and acknowledgments is to
have the recipient of a packet spontaneously generate an acknowledgment if he
doesn't generate the next packet significantly sooner than the expected retrans-
mission interval. This would save the retransmission of a packet when dealing
with long duration calls or large gaps between calls. We decided that saving this
packet was not a large enough gain to merit the extra cost of detecting that the
spontaneous acknowledgment was needed. In our implementation this extra cost
would be in the form of maintaining an additional data structure to enable an
extra process in the server to generate the spontaneous acknowledgment, ~ when
appropriate, plus the computational cost of the extra process deciding when to
generate the acknowledgment. In particular, it would be difficult to avoid incur-
ring extra cost when the acknowledgment is not needed. There is no analogous
extra cost to the caller, since the caller necessarily has a retransmission algorithm
in case the call packet is lost.

If the arguments (or results) are too large to fit in a single packet, they are
sent in multiple packets with each but the last requesting explicit acknowledg-
ment. Thus when transmitting a large call argument packets are sent alternately
by the caller and callee, with the caller sending data packets and the callee
responding with acknowledgments. This allows the implementation to use only
one packet buffer at each end for the call, and avoids the necessity of including
the buffering and flow control strategies found in normal-bulk data transfer
protocols. To permit duplicate elimination, these multiple data packets within a
call each has a call-relative sequence number. Figure 4 shows the packet sequences
for complicated calls.
ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984

Implementing Remote Procedure Calls 53

Caller machine

User RPC + Stub

send call pkt

Wait for ack

$
build n ~ p k t

Transmit it
Wait fo~l~kt

Retransmit

Wait f ~ c k

Wait fo~esult

return

$
acknowledge

Callee machine

Call[CalllD, Pkt = O, pleaseAck]

Ack[CalllD, Pkt = 0]

Data[CalllD, Pkt = 1, dontAck]

Data[CalllD, Pkt = 1, pleaseAck]

Ack[CallID, Pkt = 1]

/ Result[CalllD, Pkt = 2, dontAck]
\

Result[CalllD, Pkt = 2, pleaseAck]

Ack[CalllD, Pkt = 2])

RPC + Stub

\ Start arg record / $
acknowledge

wait next pkt

,5
invoke call

$
acknowledge

Send result

Wait for ack

,5
Retransmit

Wait for ack

Idle

Server

Fig. 4. A complicated call. The arguments occupy two packets. The call duration is long enough to
require retransmission of the last argument packet requesting an acknowledgment, and the result
packet is retransmitted requesting an acknowledgment because no subsequent call arrived.

As described in Section 3.1, this protocol concentrates on handling simple calls
on local networks. If the call requires more than one packet for its arguments or
results, our protocol sends more packets than are logically required. We believe
this is acceptable; there is still a need for protocols designed for efficient transfer
of bulk data, and we have not tried to incorporate both RPC and bulk data in a
single protocol. For transferring a large amount of data in one direction, our
protocol sends up to twice as many packets as a good bulk data protocol would
send (since we acknowledge each packet). This would be particularly inappro-
priate across long haul networks with large delays and high data rates. However,
if the communication activity can reasonably be represented as procedure calls,
then our protocol has desirable characteristics even across such long haul net-
works. It is sometimes practical to use RPC for bulk data transfer across such
networks, by multiplexing the data between several processes each of which is
making single packet calls--the penalty then is just the extra acknowledgment
per packet, and in some situations this is acceptable. The dominant advantage
of requiring one acknowledgment for each argument packet (except the last one)
is that it simplifies and optimizes the implementation. It would be possible to

ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984

54 • A.D. Birrell and B. J. Nelson

use our protocol for simple calls, and to switch automatically to a more conven-
tional protocol for complicated ones. We have not explored this possibility.

3.4 Exception Handling

The Mesa language provides quite elaborate facilities for a procedure to notify
exceptions to its caller. These exceptions, called signals, may be thought of as
dynamically bound procedure activations: when an exception is raised, the Mesa
runtime system dynamically scans the call stack to determine if there is a catch
phrase for the exception. If so, the body of the catch phrase is executed, with
arguments given when the exception was raised. The catch phrase may return
{with results) causing execution to resume where the exception was raised, or the
catch phrase may terminate with a jump out into a lexically enclosing context.
In the case of such termination, the dynamically newer procedure activations on
the call stack are unwound (in most-recent-first order).

Our RPC package faithfully emulates this mechanism. There are facilities in
the protocol to allow the process on the server machine handling a call to
transmit an exception packet in place of a result packet. This packet is handled
by the RPCRuntime on the caller machine approximately as if it were a call
packet, but instead of invoking a new call it raises an exception in the appropriate
process. If there is an appropriate catch phrase, it is executed. If the catch phrase
returns, the results are passed back to the callee machine, and events proceed
normally. If the catch phrase terminates by a jump then the callee machine is so
notified, which then unwinds the appropriate procedure activations. Thus we
have again emulated the semantics of local calls. This is not quite true: in fact
we permit the callee machine to communicate only those exceptions which are
defined in the Mesa interface which the callee exported. This simplifies our
implementation (in translating the exception names from the callee's machine
environment to the caller's), and provides some protection and debugging assist-
ance. The programming convention in single machine programs is that if a
package wants to communicate an exception to its caller then the exception
should be defined in the package's interface; other exceptions should be handled
by a debugger. We have maintained and enforced this convention for RPC
exceptions.

In addition to exceptions raised by the callee, the RPCRuntime may raise a
call failed exception if there is some communication difficulty. This is the primary
way in which our clients note the difference between local and remote calls.

3.5 Use of Processes

In Mesa and Cedar, parallel processes are available as a built-in language feature.
Process creation and changing the processor state on a process swap are consid-
ered inexpensive. For example, forking a new process costs about as much as ten
(local) procedure calls. A process swap involves swapping an evaluation stack
and one register, and invalidating some cached information. However, on the
scale of a remote procedure call, process creation and process swaps can amount
to a significant cost. This was shown by some of Nelson's experiments [13].
Therefore we took care to keep this cost low when building this package and
designing our protocol.

ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984

Implementing Remote Procedure Calls • 55

The first step in reducing cost is maintaining in each machine a stock of idle
server processes willing to handle incoming packets. This means that a call can
be handled without incurring the cost of process creation, and without the cost
of initializing some of the state of the server process. When a server process is
entirely finished with a call, it reverts to its idle state instead of dying. Of course,
excess idle server processes kill themselves if they were created in response to a
transient peak in the number of RPC calls.

Each packet contains a process ident i f ier for both source and destination. In
packets from the caller machine, the source process identifier is the calling
process. In packets from the callee machine, the source process identifier is the
server process handling the call. During a call, when a process transmits a packet
it sets the destination process identifier in the packet from the source process
identifier in the preceding packet of the call. If a process is waiting for the next
packet in a call, the process notes this fact in a (simple) data structure shared
with our Ethernet interrupt handler. When the interrupt handler receives an
RPC packet, it looks at the destination process identifier. If the corresponding
process on this machine is at this time waiting for an RPC packet, then the
incoming packet is dispatched directly to that process. Otherwise, the packet is
dispatched to an idle server process (which then decides whether the packet is
part of a current call requiring an acknowledgment; the start of a new call that
this server process should handle, or a duplicate that may be discarded). This
means that in most cases an incoming packet is given to the process that wants
it with one process swap. (Of course, these arrangements are resilient to being
given an incorrect process identifier.) When a calling activity initiates a new call,
it attempts to use as its destination the identifer of the process that handled the
previous call from that activity. This is beneficial, since that process is probably
waiting for an acknowledgment of the results of the previous call, and the new
call packet will be sufficient acknowledgment. Only a slight performance degra-
dation will result from the caller using a wrong destination process, so a caller
maintains only a single destination process for each calling process.

In summary, the normal sequence of events is as follows: A process wishing to
make a call manufactures the first packet of the call, guesses a plausible value
for the destination process identifier and sets the source to be itself. It then
presents the packet to the Ethernet output device and waits for an incoming
packet. In the callee machine, the interrupt handler receives the packet and
notifies an appropriate server process. The server process handles the packet,
then manufactures the response packet. The destination process identifier in this
packet will be that of the process waiting in the caller machine. When the
response packet arrives in the caller machine, the interrupt handler there passes
it directly to the calling process. The calling process now knows the process
identifier of the server process, and can use this in subsequent packets of the
call, or when initiating a later call.

The effect of this scheme is that in simple calls no processes are created, and
there are typically only four process swaps in each call. Inherently, the minimum
possible number of process swaps is two (unless we busy-wait)--we incurred the
extra two because incoming packets are handled by an interrupt handler instead
of being dispatched to the correct process directly by the device microcode
(because we decided not to write specialized microcode).

ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984

56 • A.D. Birrell and B. J. Nelson

3.6 Other Optimizations

The above discussion shows some optimizations we have adopted: we use
subsequent packets for implicit acknowledgment of previous packets, we attempt
to minimize the costs of maintaining our connections, we avoid costs of estab-
lishing and terminating connections, and we reduce the number of process
switches involved in a call. Some other detailed optimizations also have signifi-
cant payoff.

When transmitting and receiving RPC packets we bypass the software layers
that correspond to the normal layers of a protocol hierarchy. (Actually, we only
do so in cases where caller and callee are on the same network--we still use the
protocol hierarchy for internetwork routing.) This provides substantial perform-
ance gains, but is, in a sense, cheating: it is a successful optimization because
only the RPC package uses it. That is, we have modified the network-driver-
software to treat RPC packets as a special case; this would not be profitable if
there were ten special cases. However, our aims imply that R P C / s a special case:
we intend it to become the dominant communication protocol. We believe that
the utility of this optimization is not just an artifact of our particular implemen-
tation of the layered protocol hierarchy. Rather, it will always be possible for one
particular transport level protocol to improve its performance significantly by
by-passing the full generality of the lower layers.

There are reasonable optimizations that we do not use: we could refrain from
using the internet packet format for local network communication, we could use
specialized packet formats for the simple calls, we could implement special
purpose network microcode, we could forbid non-RPC communication, or we
could save even more process switches by using busy-waits. We have avoided
these optimizations because each is in some way inconvenient, and because we
believe we have achieved sufficient efficiency for our purposes. Using them would
probably have provided an extra factor of two in our performance.

3.7 Security

Our RPC package and protocol include facilities for providing encryption-based
security for calls. These facilities use Grapevine as an authentication service (or
key distribution center) and use the federal data encryption standard [5]. Callers
are given a guarantee of the identity of the callee, and vice versa. We provide full
end-to-end encryption of calls and results. The encryption techniques provide
protection from eavesdropping (and conceal patterns of data), and detect at-
tempts at modification, replay, or creation of calls. Unfortunately, there is
insufficient space to describe here the additions and modifications we have made
to support this mechanism. It will be reported in a later paper.

4. PERFORMANCE

As we have mentioned already, Nelson's thesis included extensive analysis of
several RPC protocols and implementations, and included an examination of the
contributing factors to the differing performance characteristics. We do not
repeat that information here.

We have made the following measurements of use of our RPC package. The
measurements were made for remote calls between two Do rados connected by an
ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984

Implementing Remote Procedure Calls

Table I. Performance Results for Some Examples of Remote Calls

57

Procedure Minimum Median Transmission Local-only

no args/results 1059 1097 131 9
1 arg/result 1070 1105 142 10
2 args/results 1077 1127 152 11
4 args/results 1115 1171 174 12
10 args/results 1222 1278 239 17
1 word array 1069 1111 131 10
4 word array 1106 1153 174 13
10 word array 1214 1250 239 16
40 word array 1643 1695 566 51
100 word array 2915 2926 1219 98
resume except'n 2555 2637 284 134
unwind except'n 3374 3467 284 196

Ethernet. The Ethernet had a raw data rate of 2.94 megabits per second. The
Dorados were running Cedar. The measurements were made on an Ethernet
shared with other users, but the network was lightly loaded (apart from our
tests), at five to ten percent of capacity. The times shown in Table I are all in
microseconds, and were measured by counting Dorado microprocessor cycles and
dividing by the known crystal frequency. They are accurate to within about ten
percent. The times are elapsed times: they include time spent waiting for the
network and time used by interference from other devices. We are measuring
from when the user program invokes the local procedure exported by the user-
stub until the corresponding return from that procedure call. This interval
includes the time spent inside the user-stub, the RPCRuntime on both machines,
the server-stub, and the server implementation of the procedures (and transmis-
sion times in both directions). The test procedures were all exported to a single
interface. We were not using any of our encryption facilities.

We measured individually the elapsed times for 12,000 calls on each procedure.
Table I shows the minimum elapsed time we observed, and the median time. We
also present the total packet transmission times for each call (as calculated from
the known packet sizes used by our protocol, rather than from direct measure-
ment). Finally, we present the elapsed time for making corresponding calls if the
user program is bound directly to the server program (i.e., when making a purely
local call, without any involvement of the RPC package). The time for purely
local calls should provide the reader with some calibration of the speed of the
Dorado processor and the Mesa language. The times for local calls also indicate
what part of the total time is due to the use of RPC.

The first five procedures had, respectively, 0, 1, 2, 4 and 10 arguments and 0,
1, 2, 4 and 10 results, each argument or result being 16 bits long. The next five
procedures all had one argument and one result, each argument or result being
an array of size 1, 4, 10, 40 and 100 words respectively. The second line from the
bottom shows a call on a procedure that raises an exception which the caller
resumes. The last line is for the same procedure raising an exception that the
caller causes to be unwound.

For transferring large amounts of data in one direction, protocols other than
RPC have an advantage, since they can transmit fewer packets in the other

ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984

58 ° A.D. Birrell and B. J. Nelson

direction. Nevertheless, by interleaving parallel remote calls from multiple proc-
esses, we have achieved a data rate of 2 megabits per second transferring between
Dorado main memories on the 3 megabit Ethernet. This is equal to the rate
achieved by our most highly optimized byte stream implementation (written in
BCPL).

We have not measured the cost of exporting or importing an interface. Both
of these operations are dominated by the time spent talking to the Grapevine
server(s). After locating the exporter machine, calling the exporter to determine
the dispatcher identifier uses an RPC call with a few words of data.

5. STATUS AND DISCUSSIONS

The package as we have described it is fully implemented and in use by Cedar
programmers. The entire RPCRuntime package amounts to four Cedar modules
(packet exchange, packet sequencing, binding and security), totalling about 2,200
lines of source code. Lupine (the stub generator) is substantially larger. Clients
are using RPC for several projects, including the complete communication
protocol for Alpine (a file server supporting multimachine transactions), and the
control communication for an Ethernet-based telephone and audio project. (It
has also been used for two network games, providing real-time communication
between players on multiple machines.) All of our clients have found the package
convenient to use, although neither of the projects is yet in full-scale use.
Implementations of the protocol have been made for BCPL, InterLisp, SmallTalk
and C.

We are still in the early stages of acquiring experience with the use of RPC
and certainly more work needs to be done. We will have much more confidence
in the strength of our design and the appropriateness of RPC when it has been
used in earnest by the projects that are now committing to it. There are certain
circumstances in which RPC seems to be the wrong communication paradigm.
These correspond to situations where solutions based on multicasting or broad-
casting seem more appropriate [2]. It may be that in a distributed environment
there are times when procedure calls (together with our language's parallel
processing and coroutine facilities) are not a sufficiently powerful tool, even
though there do not appear to be any such situations in a single machine.

One of our hopes in providing an RPC package with high performance and low
cost is that it will encourage the development of new distributed applications
that were formerly infeasible. At present it is hard to justify some of our insistence
on good performance because we lack examples demonstrating the importance of
such performance. But our belief is that the examples will come: the present lack
is due to the fact that, historically, distributed communication has been incon-
venient and slow. Already we are starting to see distributed algorithms being
developed that are not considered a major undertaking; if this trend continues
we will have been successful.

A question on which we are still undecided is whether a sufficient level of
performance for our RPC aims can be achieved by a general purpose transport
protocol whose implementation adopts strategies suitable for RPC as well as
ones suitable for bulk data transfer. Certainly, there is no entirely convincing
argument that it would be impossible. On the other hand, we have not yet seen
it achieved.
ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984

Implementing Remote Procedure Calls ° 59

We believe the parts of our RPC package here discussed are of general interest
in several ways. They represent a particular point in the design spectrum of
RPC. We believe that we have achieved very good performance without adopting
extreme measures, and without sacrificing useful call and parameter semantics.
The techniques for managing transport level connections so as to minimize the
communication costs and the state that must be maintained by a server are
important in our experience of servers dealing with large numbers of users. Our
binding semantics are quite powerful, but conceptually simple for a programmer
familiar with single machine binding. They were easy and efficient to implement.

REFERENCES
1. BIRRELL, A. D., LEVIN, R., NEEDHAM, R. Mo AND SCHROEDER, M. D. Grapevine: an exercise in

distributed computing. Commun. ACM 25, 4 (April 1982), 260-274.
2. BOGGS, D. R. Internet Broadcasting. PhD dissertation, Department of Electrical Engineering,

Stanford University, Jan. 1982.
3. BOGGS, D. R., SHOCH, J. R., TAFT, E. A. AND METCALF, R. M. PUP: An internetwork

architecture. IEEE Trans. Commun. 28, 4 (April 1980), 612-634.
4. Courier: the remote procedure call protocol. Xerox System Integration Standard XSIS-038112,

Xerox Corporation, Stamford, Connecticut, Dec. 1981.
5. DATA ENCRYPTION STANDARD. FIPS Publication 46. National Bureau of Standards, U.S. De-

partment of Commerce, Washington D.C., January 1977.
6. DEUTSCH, L. P. AND TAFT, E. A. Requirements for an exceptional programming environment.

Tech. Rep. CSL-80-10, Xerox Palo Alto Research Center, Palo Alto, Calif., 1980.
7. Ethernet, a local area network: data link layer and physical layer specifications version 1.0.

Digital Equipment Corporation, Intel Corporation, Xerox Corporation, Sept. 1980.
8. LAMPSON, B. W. AND PIER, K. A. A processor for a high-performance personal computer. In

Proc 7th IEEE Symposium on Computer Architecture, (May 1980), IEEE, New York, pp. 146-
160.

9. LAMPSON, B. W. AND SCHMIDT, E. E.'Practical use of a polymorphic applicative language. In
Proc. Tenth Annual ACM Symposium on Principles of Programming Languages (Austin, Texas,
Jan. 24-26), ACM, New York (1983), pp. 237-255.

10. LISKOV, B. Primitives for distributed computing. Oper. Syst. Rev. 13, 5 {Dec. 1979), 33-42.
11. METCALFE, R. M. AND BOGGS, D. R. Ethernet: Distributed packet switching for local computer

networks. Commun. ACM 19, 7 {July 1976), 395-404.
12. MITCHELL, J. G., MAYBURY, W. AND SWEET, R. Mesa language manual (Version 5.0). Tech. Rep.

CSL-79-3, Xerox Palo Alto Research Center, Palo Alto, Calif. 1979.
13. NELSON, B. J. Remote procedure call. Tech. Rep. CSL-81-9, Xerox Palo Alto Research Center,

Palo Alto, Calif. 1981.
14. SPECTOR, A. Z. Performing remote operations efficiently on a local computer network. Commun.

ACM 25, 4 (April 1982), 246-260.
15. WHITE, J. E. A high-level framework for network-based resource sharing. In Proc. National

Computer Conference, (June 1976).

Received March 1983; revised November 1983; accepted November 1983

ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984

