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ABSTRACT

We describe PeerReview, a system that provides account-
ability in distributed systems. PeerReview ensures that
Byzantine faults whose effects are observed by a correct node
are eventually detected and irrefutably linked to a faulty
node. At the same time, PeerReview ensures that a cor-
rect node can always defend itself against false accusations.
These guarantees are particularly important for systems that
span multiple administrative domains, which may not trust
each other.

PeerReview works by maintaining a secure record of the
messages sent and received by each node. The record is
used to automatically detect when a node’s behavior de-
viates from that of a given reference implementation, thus
exposing faulty nodes. PeerReview is widely applicable: it
only requires that a correct node’s actions are deterministic,
that nodes can sign messages, and that each node is periodi-
cally checked by a correct node. We demonstrate that Peer-
Review is practical by applying it to three different types
of distributed systems: a network filesystem, a peer-to-peer
system, and an overlay multicast system.
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1. INTRODUCTION

Nodes in distributed systems can fail for many reasons: a
node can suffer a hardware or software failure; an attacker
can compromise a node; or a node’s operator can deliber-
ately tamper with its software. Moreover, faulty nodes are
not uncommon [44]. At large scale, it is increasingly likely
that some nodes are accidentally misconfigured or have been
compromised as a result of unpatched security vulnerabili-
ties.

In systems that span multiple administrative domains, the
lack of central administration tends to aggravate these prob-
lems. Moreover, multiple trust domains pose the additional
threat of deliberate manipulation by node operators with dif-
ferent interests. Examples of systems with multiple admin-
istrative domains are network services such as DNS, NTP,
NNTP and SMTP, federated information systems, compu-
tational Grids, Web services, peer-to-peer systems, and the
Internet’s inter-domain routing system.

We consider the use of accountability to detect and expose
node faults in distributed systems [58]. For the purposes
of this paper, an accountable system maintains a tamper-
evident record that provides non-repudiable evidence of all
nodes’ actions. Based on this record, a faulty node whose
observable behavior deviates from that of a correct node can
be detected eventually. At the same time, a correct node
can defend itself against any false accusations.

Clearly, accountability by itself is not sufficient for sys-
tems in which faults can have serious and irrecoverable ef-
fects, such as deleting all replicas of a file or dispensing cash
from an automated teller machine. However, accountabil-
ity offers several benefits, by itself and in combination with
other techniques:

e Deterring faults: The mere presence of accountabil-
ity can reduce the incidence of certain faults. For instance,
the threat of exclusion may discourage freeloading, and the
threat of public embarrassment may cause organizations to
update and configure their software with increased diligence.

e Detection in fault tolerant systems: Accountabil-
ity complements Byzantine fault tolerant techniques such as
data or state machine replication [13]. Systems that use
these techniques can tolerate a bounded number of faulty
nodes, typically less than one-third of the system size. By
enabling the timely recovery of faulty nodes, accountability
can help these systems to maintain this bound, thus increas-
ing their ability to withstand successive node faults.

e Detection in best-effort systems: Systems that pro-
vide best-effort services can naturally tolerate recoverable
faults, because such faults “merely” degrade the system’s
service. However, too many unidentified faults can degrade



the system to the point of becoming unusable. Accountabil-
ity enables recovery, which helps to maintain the system’s
health.

e Assigning blame: In systems with multiple trust do-
mains, accountability irrefutably pinpoints the party respon-
sible for a problem, while allowing other principals to prove
their innocence to customers, peering partners, and author-
ities.

This paper describes and evaluates PeerReview, a general
and practical system that provides accountability for dis-
tributed systems. PeerReview creates a per-node secure log,
which records the messages a node has sent and received,
and the inputs and outputs of the application. Any node 7
can request the log of another node j and independently de-
termine whether j has deviated from its expected behavior.
To do this, i replays j’s log using a reference implementa-
tion that defines j’s expected behavior. By comparing the
results of the replayed execution with those recorded in the
log, PeerReview can detect Byzantine faults without requir-
ing a formal specification of the system.

An accountable system requires strong node identities.
Otherwise, an exposed faulty node could escape responsi-
bility by assuming a different identity [21]. In this paper, we
assume that each node is in possession of a cryptographic
key pair that can be linked to a unique node identifier. We
assume that correct nodes’ actions are deterministic and that
communication between correct nodes eventually succeeds.
These assumptions are common in the literature and reason-
able in practice [3,13,30,55].

PeerReview was designed for deployment in the Internet
and is subject to certain limitations imposed by that envi-
ronment. First, PeerReview cannot expose a faulty node
that ignores some messages but never sends a message that
a correct node would not send. The reason is that packet
loss, or network or processing delays could make a correct
node temporarily seem as though it were ignoring a mes-
sage. With PeerReview, a node that does not respond to a
message is eventually suspected by every correct node. A
suspected node can exonerate itself by acknowledging the
message. By restricting correct nodes to communicate with
only non-suspected nodes, we can isolate a suspected node
until it complies.

Second, PeerReview detects a fault after a correct node is
causally affected by the fault, but not before. Since PeerRe-
view does not assume the availability of trusted probes at
each node, it can reliably observe only messages sent and re-
ceived by correct nodes. Thus, PeerReview can detect only
faults that manifest themselves through these messages. De-
tecting faults before they impact correct nodes would require
PeerReview to make much stronger assumptions. We think
that PeerReview strikes a reasonable balance between detec-
tion power and wide applicability in real-world systems.

We have applied PeerReview to three example systems:
a network filesystem, a peer-to-peer email system, and an
overlay multicast system. An experimental evaluation shows
that PeerReview is applicable to a range of systems and that
its overhead is reasonable in practice.

Specifically, signing messages imposes a fixed processing
delay; this overhead is noticeable only in a LAN and when
messages are short. The processing and message overheads
depend on the fault assumptions and the desired strength
of the detection guarantee. The processing overhead grows
linearly with the number of nodes that need to inspect a
given node’s actions to be sure at least one of the inspect-
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ing nodes or the inspected node is correct. If we insist that
every instance of misbehavior is eventually detected, then
PeerReview’s message overhead grows with the square of the
number of nodes in the system; experiments show that this
limits PeerReview’s scalability to moderately sized systems
of hundreds of nodes. However, if we settle for a probabilis-
tic detection guarantee, then the message overhead becomes
logarithmic in the number of nodes, and PeerReview can
scale to much larger systems.

The rest of this paper is structured as follows. We discuss
related work in Section 2. We provide a precise definition
of the type of accountability and fault detection provided
by PeerReview in Section 3. We describe the PeerReview
algorithm in Section 4; our implementation in Section 5;
and our three applications in Section 6. Section 7 presents
the results of our evaluation, and Section 8 concludes this

paper.

2. RELATED WORK

Accountability in distributed systems has been suggested as
a means to achieve practical security [35], to create an incen-
tive for cooperative behavior [20], to foster innovation and
competition in the Internet [4,36], and even as a general de-
sign goal for dependable networked systems [57]. However,
it has been an open question whether accountability can be
implemented in a general and efficient manner [58].

PeerReview offers strong accountability for any dis-
tributed system that can be modeled as a collection of de-
terministic state machines. To our knowledge, no prior work
has achieved this level of generality. The type of accountabil-
ity used in PeerReview, and a precise definition of the types
of faults it can detect, has appeared in a prior workshop
position paper [25]. This paper contributes the design and
implementation of a practical system with these properties,
as well as experimentally evaluates it with three different
applications.

CATS [59] implements a network storage service with
strong accountability properties. Like PeerReview, it main-
tains secure logs that record the messages sent and received
by each node. Unlike PeerReview, however, CATS depends
on a trusted publishing medium that ensures the integrity of
these logs. CATS detects faults by checking logs against a
set of rules that describes the correct behavior of a specific
system (a network storage service). PeerReview does not re-
quire a formal specification of correct behavior; it verifies the
nodes’ behaviors by replaying their logs using the system’s
existing reference implementation.

The study of the Byzantine failure model originate in two
papers by Lamport, Pease, and Shostak [34,45]. State ma-
chine replication [33,49] is a classic technique for masking
a limited number of such Byzantine faults. Byzantine fault
tolerance (BFT) protocols [13,47,56] can mask faults as long
as less than one-third of the nodes are faulty [9]. Aiyer et
al. [1] introduced the BAR model, which can tolerate a lim-
ited number of Byzantine nodes plus an unlimited number
of “rational” nodes. PeerReview complements the existing
work on BFT by providing strong accountability.

Generic simulations suggest a more general manner of han-
dling Byzantine faults. Bracha [8] has described a protocol
that hides the malicious effects of Byzantine faults by sim-
ulating more benign “identical Byzantine” faults on top of
them. Simulations of even more restrictive classes of omis-
sion and crash faults in the Byzantine failure model were
proposed by Srikanth and Toueg [52], Neiger and Toueg [43],



Coan [17], and Bazzi and Neiger [7]. Unlike PeerReview,
these protocols are not intended to provide verifiable ev-
idence of misbehavior. They are typically designed for
broadcast-based algorithms and assume a synchronous sys-
tem or a large fraction of correct nodes.

A trusted computing platform detects faults that involve
modifications to a node’s software [23]. This approach re-
quires special hardware features, a trusted OS kernel, and a
software and hardware certification infrastructure.

The concept of failure detectors, abstract oracles that pro-
duce information about faults, was introduced by Chandra
and Toueg [15] for the crash failure model. An extension
of this work to a specific class of “muteness” failures was
explored by Malkhi and Reiter [38] and Doudou et al. [22].
Kihlstrom et al. [31] proposed a consensus algorithm using
a failure detector that produces suspicions of “detectable”
misbehavior. Unlike the detector in PeerReview, [31] does
not provide evidence of misbehavior and assumes algorithms
that are based on reliable broadcast: every message is re-
layed to all nodes when received for the first time.

A technique for a statistical evaluation of the number of
nodes with Byzantine faults was proposed by Alvisi et al. [2].
This technique is designed for specific replicated data ser-
vices based on quorums and does not provide a means to
identify which nodes are faulty.

A variety of techniques address specific types of misbehav-
ior. These techniques include secure routing for structured
overlays [11,51], incentive mechanisms to prevent freeload-
ing [18,41], and content entanglement to prevent censor-
ship [54]. These techniques can be more efficient than Peer-
Review, because they tend to be tailored to an application
and a specific type of fault; however, they are difficult to
reuse and offer no protection against unforeseen types of
misbehavior. PeerReview offers a reusable, general detection
mechanism for a large class of faults, including unanticipated
faults.

Intrusion detection systems (IDS) can handle certain types
of protocol violations [19,27,32]. However, they either are
based on heuristics and require careful balancing between
false positives and false negatives, or require a formal spec-
ification of the expected behavior, which can be difficult to
write and maintain for a complex system. PeerReview avoids
these problems by using a reference implementation of the
system as an implicit specification.

Reputation systems such as EigenTrust [28] can be used to
detect Byzantine faults, but they typically can detect only
nodes that misbehave repeatedly. Also, a coalition of faulty
nodes can denounce a correct node. PeerReview can detect
even a single instance of detectable misbehavior, and it never
exposes a correct node.

PeerReview’s secure logging and auditing techniques were
inspired by secure timelines [39], as well as by earlier work
on tamper-evident logs [50]. Secure histories have been used
for other purposes [16]. The fork consistency model intro-
duced with SUNDR [37] is similar to PeerReview’s model of
observable behavior.

3. DETECTING FAULTY BEHAVIOR

Making a distributed system accountable involves two steps:
the first creates a secure record of all nodes’ actions, the
second inspects the recorded information and detects faulty
behavior. In this section, we consider the problem of fault
detection and discuss some of its limitations.
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3.1 The problem of detection

We consider a distributed system of nodes in which each
node is supposed to follow a given protocol. If it does, then
we call the node correct; otherwise, we call the node faulty.

To illustrate the approach, we consider a simple toy proto-
col (Figure 1a). In this protocol, each node is responsible for
providing and allocating 10 units of a resource, e.g. storage
space. At any time, a node (client) may request resources
from another node (server) by sending a message REQUEST _k.
If the server has sufficient resources, it must allocate k units
of the resource for the client and return a message GRANT_k.
When the client is done with the resource, it sends a RE-
LEASE_k to the server so that the server can release the k
units and grant other requests.

There are two ways in which a node can be faulty in this
protocol: it can either send a message that a correct node
would never have sent in a given state (Figures 1c and 1d) or
ignore a message a correct node would have accepted (Fig-
ure le).

Ideally, if a node misbehaves in either of these ways, each
correct node should detect the misbehavior (we say that the
correct node ezposes the faulty node). An ideal fault detec-
tor should thus guarantee

e Ideal completeness: Whenever a node becomes
faulty, it should be exposed by all correct nodes.

However, malicious nodes may try to disrupt the system
by tricking some correct nodes into exposing other correct
nodes. To prevent this, an ideal detector should also guar-
antee

e Ideal accuracy: No correct node is ever exposed by
a correct node.

Of course, these idealistic requirements still lack impor-
tant details. For example, it is often difficult to decide
whether a message is being ignored or just delayed. It may
also be difficult to identify misbehavior that cannot be ob-
served by any correct node. Before we refine our require-
ments (Section 3.4), we consider some practical limitations
of distributed detection mechanisms.

3.2 What can (or cannot) be detected?

Naturally, the power of any detection system is limited by
the data that are (or are not) available to it. In this paper,
we assume that a node must reason about faults of other
nodes based on the messages it receives. This results in the
following fundamental limitations for a practical detector.

First, we can only detect faults that directly or indirectly
affect a message. For example, we cannot detect that a
node’s CPU is overheating or that its display has failed. This
would require a more powerful detector, e.g. one that has ac-
cess to special hardware.

Second, it is difficult to verify whether a node correctly
reports its external inputs. For example, a faulty weather
station might report a light breeze as a heavy gale. Detecting
faults of this type would require additional information, e.g.
other weather stations in the same area or a satellite image.

Third, in an asynchronous system, it can be difficult to
distinguish omission faults from messages with a particularly
long delay. For example, in the absence of strong synchrony
assumptions, if a node has been granted resources but does
not release them for a long time, we can only suspect that it
has become faulty, but there is no ‘smoking gun’ that would



client:
send (REQUEST_k)
wait_for (GRANT k)
/* do work */
send (RELEASE_k)

REQ\ s REp ¢

/
)

8

D

. ot < T
se;v ?:'10 / ‘gy & ‘?y
repeat forever
m := get next Sup

unprocessed Msg. REL\G \\5‘
if (m=REQUEST k)
if (N >= k)
send (GRANT_k)
N := N-k
else buffer(m)
elif (m=RELEASE k)

G 5

5

©

(b)

N := N+k

(a)

. 4

2eg | 2eg| =2
s ] %\2‘
] o q :y @)

G

I

G 5

Q
5

(
A
oo

Gyp
\\5‘

BB

‘

(d) (e) ®

Figure 1: A simple example protocol (a) and five message exchanges: Correct behavior (b), incorrect response
from node B that A can detect without C’s help (c), incorrect response from node B that A and C can detect
only if they cooperate (d), missing response from node B (e), and faulty behavior by node C with B as an
accomplice (f). In case (f), because node A cannot observe C’s behavior, it cannot expose the fault on C

unless B cooperates.

allow us to expose it. The concept of suspected nodes is
well known from the literature on unreliable fail-stop failure
detectors [15]. A suspicion may sometimes turn out to be
groundless, e.g. if the RELEASE message eventually arrives.

Finally, we can only detect faults that are observable by
a correct node. The reason is that we cannot expect the
faulty nodes to share any information about the messages
they have observed. For example, they could be trying to
cover the traces of other faulty nodes with whom they are
colluding. Hence, if one faulty node sends a telltale message
to another faulty node without changing its observable state,
we cannot hope to expose the deviating node on the basis
of this message only. Consider the example in Figure 1f.
Here, node B can clearly observe that C is faulty, because it
issues a second request without releasing its resources first.
However, node A can only observe B’s GRANT_8 message,
which is correct. If node B does not share its observations
with A, it can prevent C from being exposed, which makes
B a faulty accomplice of C.

However, if none of the correct nodes can observe a par-
ticular fault, it is of little practical relevance because, from
the correct nodes’ perspective, the faulty nodes are acting
as if they were correct.

3.3 The letter versus the spirit of the law

It is tempting to think of fault detection as a panacea that
works against all kinds of bad, or ‘faulty’, behavior. How-
ever, recall that our definition of ‘faulty’ depends on a spe-
cific protocol. Thus, an action may be against the intent
behind the protocol (the spirit of the law), but may be per-
fectly legal with respect to the protocol’s specification (the
letter of the law).

For instance, our example protocol in Figure la is not
deadlock-free. Therefore, adding fault detection will nei-
ther make it deadlock-free nor enable nodes to detect or
resolve deadlocks. However, if we augment the protocol to
be deadlock-free, then a faulty node can create a deadlock
only by violating the protocol. Fault detection will then be
able to identify the fault, thus enabling the correct nodes to
break the deadlock.

A similar argument applies to external input that is not
verifiable. Consider a cooperative storage system that allows
users to declare freely the amount of storage they wish to
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contribute. If “zero” is a valid setting, fault detection cannot
expose freeloaders who use this setting; their behavior is
against the intent behind the protocol but does not violate its
specification. However, if the protocol specifies a minimum
storage capacity, fault detection can expose participants who
refuse to store at least the minimal amount of data.

3.4 Problem statement

Now we are ready to relax and refine our “idealistic” require-
ments from Section 3.1. To capture the protocol dependence
and the restriction to observable faults, we use the notions
of detectably faulty and detectably ignorant nodes (formal
definitions can be found in a technical report [24]).

Briefly, a node 7 is detectably faulty if it breaks the pro-
tocol in a way that causally affects a correct node. For in-
stance, 7 sends an “incorrect” (with respect to its protocol)
message m that, through a sequence of causally related mes-
sages, precedes an event observed by a correct node. The
nodes that send messages caused by m are called accomplices
of i (with respect to m). Note that a node can appear cor-
rect to each individual correct node and still be detectably
faulty: this happens, for instance, if the node sends two ob-
servable messages that could never be sent by a correct node
in the same execution (see the example in Figure 1d).

A node i is detectably ignorant if it never acknowledges
that it received a message sent by a correct node (see the
example in Figure 1le).

PeerReview produces two kinds of fault indications: ex-
posed and suspected. Intuitively, we say that a node 7 is
exposed by a node j if 7 has a proof of i’s misbehavior, and
1 is suspected by j if, according to j, ¢ has not acknowl-
edged a certain message sent to it. Note that j withdraws
the “suspected” indication when it learns that i accepted the
message. To account for long message delays, we require
only that faults are detected eventually, after some delay.

Now we define the following requirements:

e Completeness: (1) Eventually, every detectably ig-
norant node is suspected forever by every correct node,
and (2) if a node 7 is detectably faulty with respect to
a message m, then eventually, some faulty accomplice
of ¢ (with respect to m) is exposed or forever suspected
by every correct node.



e Accuracy: (1) No correct node is forever suspected by
a correct node, and (2) no correct node is ever exposed
by a correct node.

Although a system with these properties is weaker than our
idealized detector from Section 3.1, it is still very strong
in practice: every instance of detectably faulty behavior is
eventually detected, and there are no false positives. As we
will see later, relaxing completeness in favor of a probabilis-
tic detection guarantee permits a highly scalable implemen-
tation, while still detecting faults with high probability and
avoiding false positives.

4. DESIGN OF PEERREVIEW

In the previous section, we discussed fault detection and de-
fined its properties. Next, we describe the design of Peer-
Review, an accountability system that satisfies these prop-
erties. A formal proof of these properties can be found in a
technical report [24].

4.1 Overview

We first describe a simplified version of PeerReview, called
FullReview. For FullReview, we make the (unrealistic) as-
sumption that there is a trusted entity that can reliably and
instantly communicate with all nodes in the system. The
system’s membership is static, and each node knows the
specification of the entire system.

FullReview works as follows: All messages are sent
through the trusted entity, which ensures that all correct
nodes observe the same set of messages in the same order.
Furthermore, each node ¢ maintains a log \;; for each other
node j, and in this log it records all messages that were
sent either from or to j. Periodically, ¢ checks each of its
logs against the system specification. If a node ¢ finds that
a node j has not yet sent the message it should have sent
in its last observed state, then ¢ suspects 7 until that mes-
sage is sent. If j has sent a message it should not have sent
according to the specification, then ¢ exposes j.

It is easy to see that FullReview is both complete and
accurate. On the one hand, when a node ¢ sends an “incor-
rect” message, the trusted entity forwards the message to all
nodes, and 7 is exposed by every correct node. Also i is sus-
pected by every correct node as long as a message from i is
missing. On the other hand, no correct node can be exposed
or indefinitely suspected by any correct node.

However, FullReview is based on strong assumptions: a
trusted, reliable communication medium and a formal sys-
tem specification. Moreover, FullReview’s complexity is at
least quadratic in the number of nodes, for messages, stor-
age, and computation. In PeerReview, we refine this simple
design to arrive at a practical system:

e Each node only keeps a full copy of its own log; it
retrieves other logs when necessary. Nodes exchange
just enough information to convince another node that
a fault is, or is not, present.

e Tamper-evident logs and a commitment protocol en-
sure that each node keeps its log consistent with the
set of messages it has exchanged with all correct nodes
or else risk exposure.

e Fach node is associated with a small set of other nodes,
who act as its witnesses. The witnesses collect evidence
about the node, check its correctness, and make the
results available to the rest of the system.
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Figure 2: Information flow between application,
state machine, and detector module on node 1.

e PeerReview uses a reference implementation of the
node software to check logs for faulty behavior. Thus,
it does not require a formal system specification, which
is difficult to obtain and maintain in practice.

e PeerReview uses a challenge/response protocol to deal
with nodes that do not respond to some messages. This
allows PeerReview to operate on an unreliable network
that satisfies only weak synchrony assumptions.

We will describe each of these refinements in the following
subsections.

4.2 System model

Each node i is modeled as a state machine S;, a detector
module D;, and an application A; (Figure 2). The state ma-
chine represents all the functionality that should be checked
by PeerReview, whereas the application represents other
functions that need not be checked, e.g. a GUI. The de-
tector module D; implements PeerReview; it can observe all
inputs and outputs of S;, and it can communicate with the
detector modules on other nodes. We assume that a correct
node implements S; and D; as specified, whereas a faulty
node may behave arbitrarily.

The detector module issues failure indications about other
nodes to its local application. Informally, ezposed(j) is raised
when ¢ has obtained proof of j’s misbehavior; suspected(s)
says that ¢ suspects that j does not send a message that it
is supposed to send; trusted(j) is issued otherwise.

4.3 Assumptions

The design of PeerReview is based on the following assump-
tions:

1. The state machines S; are deterministic.

2. A message sent from one correct node to another is
eventually received, if retransmitted sufficiently often.

3. The nodes use a hash function H(-) that is pre-image
resistant, second pre-image resistant, and collision re-
sistant.

Assumptions 1-3 are common for techniques based on state
machine replication [49], including BFT [13].

4. Each node has a public/private keypair bound to a
unique node identifier. Nodes can sign messages, and
faulty nodes cannot forge the signature of a correct
node.



Figure 3: (a) A linear log and its hash chain, which
is recursively defined on the log entries, and (b) a
forked log with two branches.

5. Each node has access to a reference implementation of
all S;. The implementation can create a snapshot of
its state, and its state can be initialized according to a
given snapshot.

6. There is a function w that maps each node to its set of
witnesses. It is assumed that for each node i, the set
{i} Uw(i) contains at least one correct node; otherwise,
PeerReview might lose completeness with respect to
node 4.

Assumption 4 can be met, for instance, by installing each
node with a certificate that binds the node’s public key to its
unique identifier. However, any type of name binding that
avoids Sybil attacks [21] will work. In symmetric systems
where all nodes run the same protocols, a node can simply
use its own implementation as the reference implementation
(Assumption 5). Otherwise, nodes can obtain a reference
implementation for another node from a trusted source. The
appropriate definition of w (Assumption 6) depends on the
system configuration, which will be discussed in Section 5.3.

4.4 Tamper-evident logs

To enforce accountability, PeerReview must keep a secure
record of the inputs and outputs of each node, and it must
be able to detect if that record has been tampered with.
PeerReview implements such a record using a technique in-
spired by secure histories [39].

A log is an append-only list that contains all the in-
puts and outputs of a particular node’s state machine in
chronological order. The log also contains periodic state
snapshots and some annotations from the detector mod-
ule. Each log entry ex = (s, tr,cr) has a sequence num-
ber si, a type ti, and some type-specific content cx. The
sequence numbers must be strictly increasing but may be
non-contiguous; for example, a timestamp could be used.
Additionally, each record includes a recursively defined hash
value hy = H (hi—1]|sk||tx]||H (ck)) (Figure 3a); || stands for
concatenation. The base hash h_1 is a well-known value.

The resultant hash chain, along with a set of authen-
ticators, makes the log tamper-evident. An authenticator
o, = 0j(sk, hi) is a signed statement by node j that its log
entry ey has hash value hg; o;(-) means that the argument
is signed with j’s private key.

By sending «j to node i, a node j commits to having
logged entry ex and to the contents of its log before e. If j
subsequently cannot produce a prefix of its log that matches
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the hash value in ai, then ¢ has verifiable evidence that j
has tampered with its log and is therefore faulty.

Moreover, i can use «j as verifiable evidence to convince
other nodes that an entry ep exists in j’s log. Any node
can also use aj to inspect e; and the entries preceding it
in j’s log. To inspect = entries, ¢ challenges j to return
€k—(z—1),---, €k and hg_,. If j responds, i calculates the
hash value hjy from the response and compares it with the
value in the authenticator. If j has not returned the correct
log entries in the correct order, the hash values will differ. In
this case, ¢ has evidence that j is faulty. We discuss the case
in which j does not respond to the challenge in Section 4.8.

Summary: Logs and authenticators form a tamper-
evident, append-only record of a node’s inputs and outputs.

4.5 Commitment protocol

We must ensure that a node cannot add an entry to its log
for a message it has never received. Also, we have to ensure
that a node’s log is complete, i.e. that it contains an entry
for each message sent or received by the node to or from a
correct node.

When node i sends a message m to node 7, ¢ must commit
to having sent m, and j must commit to having received m.
They obtain an authenticator from the other node included
in the message and its acknowledgment, respectively. This
authenticator covers the corresponding log entry. A log entry
for a received message must include a matching authentica-
tor; therefore, a node cannot invent log entries for messages
it never received.

When i is about to send m to j, it creates a log entry
(sk,SEND, {j,m}), attaches hr_1, sx and o;(sk||hx) to m,
and sends the result to j. Thus, recipient j has enough in-
formation to calculate hy and to extract af,. If the signature
in af is not valid, j discards m. Otherwise, j creates its
own log entry (s;,RECV, {7, sk, m}) and returns an acknowl-
edgment with h;_1, s;, and o;(si||h:) to i. This allows i to
extract and verify o . If ¢ does not receive a valid acknowl-
edgment, 7 sends a challenge to j’s witnesses; we will explain
the details in Section 4.8.

Summary: The commitment protocol ensures that the
sender (respectively the receiver) of each message m obtains
verifiable evidence that the receiver (respectively the sender)
of m has logged the transmission.

4.6 Consistency protocol

A faulty node can attempt to escape detection by keeping
more than one log or a log with multiple branches (Fig-
ure 3b). For example, this could be a promising strategy for
node B in Figure 1d, who might keep one log for messages
from A and another for messages from C. Both logs would
show correct behavior, even though node B is clearly faulty.
To avoid this attack, we exploit the fact that a node can
produce a connecting log segment for each pair of authenti-
cators it has ever signed if, and only if, it maintains a single,
linear log.

If a node i receives authenticators from another node j, it
must eventually forward these authenticators to the witness
set w(j). Thus, the witnesses obtain verifiable evidence of
all the messages j has sent or received. Periodically, each
witness w € w(j) picks the authenticators with the lowest
and the highest sequence number and challenges j to return
all log entries in this range. If j is correct, these log entries
form a linear hash chain that contains the hash values in
all the other authenticators. If they do not, w has obtained



verifiable evidence that j is faulty. We discuss the case in
which j does not respond to the challenge in Section 4.8.

Finally, each w € w(j) uses the log entries to extract all
the authenticators that j has received from other nodes and
sends them to the corresponding witness sets. This is nec-
essary because j could be acting as a faulty accomplice of
some node k; it could forward k’s messages without send-
ing the authenticators to w(k). We note that this step has
O(Jw(4)| - |w(k)|) message complexity.

Summary: The consistency protocol ensures that each
node either maintains a single, linear log that is consistent
with all the authenticators the node has issued, or it is ex-
posed by at least one correct witness.

4.7 Audit protocol

In the next step, we use a node’s log to check whether the
node’s behavior conforms to that of its reference implemen-
tation. Each witness w of a node i periodically looks up its
most recent authenticator from i (say, k) and then chal-
lenges i to return' all log entries since its last audit, up to
and including ex. Then w appends the new entries to its
local copy Aw: of i’s log.

Next, w locally creates an instance of i’s reference imple-
mentation and initializes it with a recent snapshot from A.;.
Then, it replays all the inputs starting from that snapshot
and compares S;’s output with the output in the log. Since
we require that S; be deterministic, any discrepancy indi-
cates that 4 is faulty. In this case, w can use o} and a suffix
of A\w: as verifiable evidence against 7, and this evidence can
be checked by any correct node.

Summary: The audit protocol ensures that, for each node
i, either i’s actions are consistent with the reference imple-
mentation of i’s state machine, or i is exposed by at least
one correct wiltness.

4.8 Challenge/response protocol

The protocols described so far can expose faulty nodes if
they respond to challenges. But what if a node does not
respond to a challenge, or it fails to acknowledge a message
that was sent to it? Unless we make stronger assumptions
about synchrony, we cannot distinguish an uncooperative
faulty node from a correct node that is slow or suffering
from network problems.

When a node j concludes that another node ¢ is refusing to
cooperate, it indicates the suspected state for i and creates a
challenge for i. The challenge must contain enough evidence
to convince another correct node that if i were correct, it
would be able to answer. The node j then sends the challenge
to 7’s witnesses, who forward it to 7. If ¢ does not send a
response, the witnesses indicate that i is suspected. There
are two types of challenges.

An audit challenge consists of two authenticators: af and
aj with k < I. After checking the signatures on aj and aj,
any correct node has enough evidence to convince itself that
either i is faulty or the entries e, and e; must exist in ¢’s
log. If i is correct, it can answer the challenge with the
corresponding log segment, whose hash values will form a
hash chain connecting af to aj.

A send challenge consists simply of a message m and
the extra information appended by the consistency proto-

!Because the audit protocol and the consistency protocol
inspect the same log entries, our implementation retrieves
them only once. Here, we separate the two protocols for
clarity of presentation.
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col (Section 4.6). After extracting and checking the authen-
ticator from m, any correct node is convinced that i must
acknowledge m. If 7 is correct and has not yet received m,
¢ can accept m now and return an acknowledgment. If ¢
has already received m, it can simply re-send the earlier ac-
knowledgment.

Summary: The challenge/response protocol ensures that,
if a node i fails to respond to a challenge or does not ac-
knowledge a message, it is eventually suspected by at least
one correct witness. The suspicion persists until the node
answers the challenges or acknowledges the message.

4.9 Evidence transfer protocol

The mechanisms described so far ensure that at least one
correct node obtains verifiable evidence of each fault or a
challenge for each suspected node. We also need to make
sure that all correct nodes eventually collect the same ev-
idence (the same set of audit and send challenges) against
faulty nodes. We achieve this by allowing every node i to
periodically fetch the challenges collected by the witnesses of
every other node j. Note that, in most practical settings, i
may be interested only in accusations against the nodes that
(directly or indirectly) communicate with it. In this case,
needs to contact only the witnesses of these nodes.

If a correct node i obtains a challenge for another node j,
its detector indicates suspected(j). When i receives a message
from j in this state, it challenges j. Once i has received
valid answers to all pending challenges, its detector indicates
trusted(j) again. If ¢ obtains a proof of j’s misbehavior, its
detector outputs exposed(j).

Summary: The evidence transfer protocol ensures that
all correct modes eventually output a failure indication for
each faulty node.

4.10 Summary

The use of logs and authenticators helps to maintain a shared
tamper-evident, append-only record of every node’s activity.
By periodically checking and replaying the logs, and com-
paring the results with the provided authenticators, the con-
sistency, commitment and audit protocols ensure that a de-
tectably faulty node is exposed or permanently suspected by
at least one of its correct witnesses. The challenge/response
protocol ensures that a node is suspected if it is unrespon-
sive but allows a correct node to exonerate itself by respond-
ing. Finally, the evidence transfer protocol allows the cor-
rect nodes to share their evidence and eventually to come
to the same conclusion about each detectably faulty node.
To summarize, PeerReview has the completeness and accu-
racy properties described in Section 3.4. A proof of these
properties can be found in a technical report [24].

4.11 Extension: Probabilistic guarantees

PeerReview provides strong guarantees under very conser-
vative failure assumptions; this limits its scalability to mod-
erately large systems. If we assume an upper bound ¢ on
the fraction of faulty nodes in a system of N nodes, then we
can ensure strong completeness only if we assign ¢ = [N ]
witnesses to each node. In this case, the message complexity
is dominated by the consistency protocol’s O@)?) complexity
and hence grows with O(N?).

However, there are two extensions that can considerably
improve PeerReview’s scalability, at the expense of a slightly
relaxed completeness guarantee. If we accept a small prob-



ability Py > 0 that an all-faulty witness set exists, we need
to assign only

Pn(l -(- Pﬁ)}
V= 1

ney
witnesses to each node, which grows with O(log N). In ad-
dition, if we accept a small probability P, > 0 that a given
instance of misbehavior remains undetected, we can design
a randomized consistency protocol in which a node sends an
authenticator only with probability

1
€= 1—(1—Py)¥?
(1-¢)?

This removes most of the redundant transmissions and re-
duces the message complexity of the consistency protocol to
a constant. If both extensions are combined, the message
complexity is dominated by the audit protocol and grows
with O(log N).

Why does P, > 0 lead to such a marked improvement?
The reason is that, if P,, = 0, the consistency protocol must
guarantee completeness even when both the sender’s and the
receiver’s witness set contain just a single correct node. As
the size of the witness set grows, this extreme case becomes
more and more unlikely. A detailed probabilistic analysis
of the randomized protocol can be found in a technical re-
port [24].

S. IMPLEMENTATION

In this section, we describe our implementation of PeerRe-
view. We discuss optimizations and practical engineering
challenges, such as log truncation. Then, we discuss how
the implementation can be adapted to specific environments
through an appropriate choice of witnesses and configuration
parameters.

5.1 The PeerReview library

Our PeerReview codebase is written as a C++ library, which
includes all application-independent parts of the system.
The library is used by all three example applications de-
scribed in Section 6 and can be reused for other systems.
It implements the tamper-evident logs and PeerReview’s
five protocols. External libraries provide the cryptographic
primitives and a transport layer for sending and receiving
messages. The application system is expected to provide
various callbacks, including one that instantiates a reference
implementation of another node, which is used when Peer-
Review needs to check that node’s log.

Conceptually, the library is interposed between the trans-
port layer and the application. All incoming and outgoing
messages go through the library. The library may append
headers, such as an authenticator for the consistency pro-
tocol, or send messages of its own, e.g. a challenge. Our
PeerReview library contains 5,961 lines of code, counted by
the number of newlines. It is available for download from
the project homepage [46].

The library makes use of two simple optimizations to save
bandwidth in the auditing protocol. First, when transferring
log segments to a witness, it replaces all the outputs and
state snapshots with hash values. The witness does not lose
information that way, because it obtains the outputs during
replay. It can compare the hash of these outputs with the
hash values in the log. Second, if part of a message is never
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examined by the state machine, the library hashes that part
also, because it does not affect the replay. For example, a
message handled by a routing protocol can be reduced to its
routing header and a hash of its body. The library provides
the full set of snapshots and outputs upon request, e.g. when
a new witness needs to be initialized.

Another optimization applies to the consistency protocol.
Rather than forwarding authenticators to the witnesses im-
mediately, the library buffers them locally for some time Tp,,¢
and then sends them in batches. This increases the time to
detection by up to Ty, but increases message efficiency be-
cause authenticators are very small. An authenticator with
a SHA-1 hash and a 1024-bit RSA signature is just 156 bytes
long.

The library also supports authenticated dictionaries [42],
which applications can use to commit efficiently to large data
structures, such as an entire disk image. This is useful, e.g.
when a node generates evidence. The node can include only
those parts of the data structure that the recipient needs to
check the evidence, e.g. the disk blocks that have actually
been accessed.

5.2 Log truncation

PeerReview’s append-only log must eventually be truncated.
A simple solution is to allow each node to discard all log
entries older than some time Ttrynce. This approach requires
very loosely synchronized clocks. Whether a node’s clock is
sufficiently accurate can be checked by PeerReview.

Despite log truncation, exposed faulty nodes remain ex-
posed forever, because the incriminating evidence can be
verified without access to the corresponding log entries. A
fault could remain undetected if legitimate evidence of the
fault were to surface only after the log was truncated. This
case can be avoided by keeping logs much longer than the
expected duration of node and network outages. In practice,
log entries can and should be kept at least on the order of
months.

As a result of log truncation, a suspected node that was
never exposed may become trusted again after Tyyync has
elapsed. However, an attacker cannot gain much leeway from
this exoneration, because a faulty node must remain silent
for at least Ttrune — Taudit = Ttrunc (e.g. several months)
after each misbehavior to avoid exposure. Moreover, a hu-
man operator could infrequently check for nodes that have
been suspected for a long time and permanently revoke or
refuse to renew such nodes’ certificates.

5.3 Configuring witnesses

Witness configuration depends on the type of system and
the nature of the deployment in which PeerReview would
be used. In a system that is overseen by a single organi-
zation (e.g. Planetlab), one can configure a dedicated set of
machines as witnesses for all nodes. In a federated system
(e.g. Internet inter-domain routing), each organization may
wish to act as a witness for the organization’s peering part-
ners. In a client-server system (e.g. a Web service), clients
may act as witnesses for the servers they depend on. Al-
ternatively, replicated servers can act as mutual witnesses.
Lastly, in a peer-to-peer system (e.g. Skype), each node can
be witnessed by a random set of other participating nodes.

Depending on the choice of witness configuration, an ap-
propriate function w, which maps each node to its witness
set, is defined. In the cases in which the system membership
is relatively static, we can simply specify w in a configura-



tion file, signed by the appropriate authority and distributed
throughout the system. If membership is dynamic, w must
be dynamic as well; new witnesses can initialize their state
by first obtaining some recent authenticators from the old
witnesses and then performing an audit to obtain the latest
checkpoint.

In peer-to-peer systems, we use consistent hashing [29] to
map witnesses to nodes; in this case, each node acts as a
witness for the £ nodes whose node identifiers are closest to
its own. This approach spreads the auditing overhead evenly
across the nodes, and it minimizes the number of witness
sets that are affected by a random fault. Nodes must not
be allowed to choose their own identifiers, and they must be
able to securely evaluate w at runtime, even in the presence
of faulty nodes. Secure routing [11] ensures this.

In systems with dynamic witness sets, additional band-
width is required to initialize new witnesses, which may limit
PeerReview’s tolerance of high levels of churn. Note that
some rate of churn among witnesses is actually desirable in
configurations with small witness sets (Section 4.11): in this
case, it ensures that the (unlikely) state in which some faulty
node’s witnesses are all faulty does not persist indefinitely.

5.4 Choosing parameters

PeerReview’s most important parameter is the size of a
node’s witness set. Consider, for instance, the case when
witness sets of all nodes have the same size 1. A higher v
increases overhead. PeerReview’s storage requirement and
CPU overhead grow with O(v), and its message complexity
with O(?). To maintain PeerReview’s completeness guar-
antee, ¢ must be chosen such that for each node ¢, the set
{i} Uw(i) contains at least one correct node at any given
time. In other words, either i or one of its 1) witnesses must
be correct. In practice, ¥ should be chosen as the minimal
value that satisfies this criterion.

If a lower value is chosen for 1, PeerReview might lose
its strong completeness guarantee, i.e., it can miss some
faults. However, it still does not suspect or expose any cor-
rect nodes. For more details, see Section 4.11.

The audit interval Tg,q; and the time limit Ty, for
buffering authenticators determine the maximum time to de-
tection. Shorter intervals result in quicker detection and thus
reduce the damage a faulty node can do before it is evicted;
however, short intervals also increase message overhead be-
cause logs are transferred in small pieces rather than in large
segments.

It is also possible to perform audits on demand, rather
than periodically. For instance, in a system providing best-
effort service, witnesses may refrain from auditing until they
observe a loss of service quality that indicates the presence of
faults. With this policy, detection is not guaranteed during
periods when the witnesses do not audit. During periods
when the witnesses audit, PeerReview provides the usual
guarantees.

The key length k of the nodes’ keys must be high enough to
prevent an attacker from forging signatures; however, higher
values also mean more CPU load for signing and verifying
authenticators. For our experiments, we used RSA with the
recommended key length of 1024 bits [5].

5.5 Alternatives to fault detection

PeerReview has two main components. One component pro-
vides a tamper-evident record of all observable actions; the
other component detects faults by regularly checking that
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record against a reference implementation. For some appli-
cations, it may be useful to replace the second component
with another fault detection mechanism. For example, sys-
tems like BGP [48] have formal specifications of correct or
incorrect behavior; in these cases, the auditors could directly
check the record against the specification, e.g. using [6]. An-
other example is an electronic voting system, in which the
secure record could be inspected in court in case an election
is contested.

6. APPLICATIONS

In this section, we first discuss the general steps for applying
PeerReview to an application, and then we briefly describe
our three example applications. Additional details can be
found in [24].

6.1 How to apply PeerReview

Applying PeerReview to a new system generally involves two
steps. The first step is to decide which parts of the system
should be included in the state machine S; for each node 7
and thus checked by PeerReview. Including more subsys-
tems potentially enables PeerReview to detect more types
of faults. However, because PeerReview allows any node to
audit past and current states of S;, any subsystems that deal
with sensitive information, e.g. with cryptographic keys or
clear-text private information, should not be included.

The second step is to make sure S; is deterministic. Given
some initial state and a sequence of inputs, S; must al-
ways produce the same outputs and finish in the same
state. In practice, many systems have some sources of non-
determinism, but usually these can be identified and dealt
with. For example, if a system uses a pseudo-random num-
ber generator, we include its seed value in the state snapshot,
so the same random sequence is generated during replay. If
a protocol relies on real time, e.g. for timestamps or time-
outs, we record the time of each event in the log; we use this
information to update a virtual clock used during replay and
to trigger timeouts.

If a system is concurrent and generates events in a non-
deterministic order, we can use synchronization to make the
order deterministic. For instance, we can add synchroniza-
tion to ensure that jobs finish in the order in which they
were started; alternatively, we can log the sequence in which
the jobs actually finished and enforce this sequence during
replay.

In general, adding PeerReview to a system presents the
same challenges as adding state-machine replication (e.g.
BFT), and the same solutions apply (see e.g. [10]). In ad-
dition to eliminating sources of non-determinism, PeerRe-
view requires state snapshots to enable replay by witnesses,
whereas BFT requires snapshots to initialize new replicas.
To transfer snapshots between different implementations,
BFT can use state abstraction [14]; this technique can be
applied to PeerReview as well.

6.2 Application #1: Overlay multicast

Our first application delivers streaming content, such as au-
dio or video, from a single source to a potentially large set of
client nodes. Because the source may not have enough band-
width to support all the clients simultaneously, the clients
must contribute some of their own bandwidth and forward
the content they receive to some other clients. We use a
simple multi-tree multicast protocol to ensure that the for-
warding load can be distributed well among the clients [12].



The content is striped across multiple trees, and each client
is required to be an interior node in one of the trees and a
leaf node in the others.

Overlay multicast provides a best-effort service. By ap-
plying PeerReview to this system, we gain the ability to de-
tect and isolate misbehaving nodes, e.g. nodes that tamper
with the content they are forwarding, or so-called freeload-
ers, who refuse to contribute resources to the system. The
witnesses for a node are selected randomly among the re-
maining clients. If a client is suspected or exposed, its par-
ents refuse to deliver to it any more content, and its children
seek a different parent. This limits the damage a faulty node
can cause, and it creates a disincentive for clients to misbe-
have. Therefore, PeerReview lends the system robustness in
the face of malicious participants and freeloaders.

6.3 Application #2: Network filesystem

In this application, we added PeerReview to an existing
NFSv2 server implementation [53]. PeerReview allows a set
of NFS servers to check each other. Because NFS servers
do not tolerate Byzantine faults, a faulty server may deliver
incorrect data to a client. However, PeerReview allows us to
detect quickly if an attacker has tampered with one of the
file servers, e.g. by removing or corrupting data.

Each file server exports a different volume via NFS. In ad-
dition, each server is a witness for some of the other servers
and audits them periodically. To save bandwidth, each wit-
ness maintains a full replica of the volumes it audits, rather
than repeatedly transferring checkpoints. When a witness
notices a fault, it uses the authenticated dictionary to re-
duce the size of the evidence, leaving only those parts of the
volume that are relevant for checking. Then it distributes
the evidence to the administrators and any interested clients.
Thus, faults can be quickly repaired and cannot go unnoticed
for long.

Our implementation uses the NFS server in the Linux
2.6.15 kernel in combination with a user-level wrapper pro-
cess for PeerReview. Since the ext2 file system is not com-
pletely deterministic, we had to apply a small 467-line ker-
nel patch to remove sources of non-determinism?. The patch
also adds a mechanism for setting the file system time to a
given value, which is necessary to get the same timestamps
during replay.

6.4 Application #3: Peer-to-peer email

ePOST [40] is a peer-to-peer email service. Email and email
folders are stored in a distributed hashtable (DHT), which is
cooperatively implemented by all participating nodes. The
DHT is replicated for availability and durability [26], and
it can adapt to node failures and churn. To ensure confi-
dentiality, all content is encrypted before it is added to the
DHT. The key of an object in the DHT is the hash of its
content, which makes the object’s integrity easy to verify.
Given the existing security and fault tolerance mecha-
nisms in ePOST, the remaining threat is denial of service. A
faulty node can misroute or drop messages and thus prevent
other nodes from retrieving content, or it can manipulate
the topology of the peer-to-peer system to hide the presence
of other nodes. We use PeerReview to identify misbehaving

2For example, ext2 has a randomized block allocation policy,
which matters because we use disk images as checkpoints.
We made it deterministic by tying its random seed to the
current time.
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nodes and to eject them from the system. Thus, faulty nodes
cannot degrade the (best-effort) service indefinitely.

To handle these threats, it is sufficient to include the DHT
in the state machine. ePOST’s cryptographic and IMAP
mechanisms need not be checked by PeerReview, which pre-
serves the confidentiality of email. We could not experi-
ment with a live deployment because ePOST no longer has
a significant user base; instead, our experiments are based
on message traces from a past deployment provided by the
ePOST authors.

6.5 Summary

Our three example applications are not the only, and may
not be the most natural, applications for PeerReview. We
chose them for two reasons. First, they represent different
types of systems that PeerReview can be applied to. The
filesystem is a small-scale client-server system for a LAN
environment, whereas overlay multicast and ePOST are de-
centralized, cooperative systems for wide-area deployment.
Second, the applications place stress on different aspects of
PeerReview and explore its limitations. For instance, the
fileserver has a large amount of state and a high rate of
latency-sensitive requests. Overlay multicast has a high mes-
sage rate and transmits a large volume of data. ePOST is a
complex peer-to-peer system that includes distributed stor-
age and a DHT.

7. EVALUATION

In this section, we present experimental results from our
three example applications. We cover the systems’ behavior
under faults, the overheads of running PeerReview and its
impact on application performance.

7.1 Methodology

Each of our applications places stress on a different aspect of
PeerReview. For example, the network filesystem is sensitive
to latency increases and is limited by throughput, whereas
ePOST tolerates wide-area latencies and is typically lightly
loaded. ePOST runs on nodes in residential or wireless net-
works and thus has limited bandwidth, whereas the network
filesystem usually runs on a cluster with high-speed links.
For this reason, we chose to evaluate each performance met-
ric in the context of the application for which that metric is
most critical.

We used Sun V20Z rack servers in a local cluster, consist-
ing of dual 2.5 GHz Opteron CPUs connected with 1 Gbps
switched Ethernet, running Linux 2.6.15. For the filesystem
experiments, the workload was generated by a host in the
same subnet. We compare the performance of the kernel-
level NF'S server with and without our user-level implemen-
tation of PeerReview.

For the multicast experiments, we generated a CBR
stream of 300 Kbps, which is a common rate for stream-
ing video to clients with broadband connections. We used a
delay buffer of 10 seconds and counted blocks as lost if they
were not received by this deadline. To obtain controlled con-
ditions, we used a simple network emulator that forwards
packets after a configurable delay. However, our implemen-
tation is complete and can also be run on a network testbed
like PlanetLab.

Our ePOST experiment was driven by a one-day trace
from a real ePOST deployment with 25 nodes/users, which
was kindly provided by the authors of ePOST. The trace
contains all messages sent on December 22, 2005, as well
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Figure 4: Multicast with a single freeloader: Im-
pact on an average correct node (left bar) and on
the freeloader (right bar). The error bars show min-
imum and maximum values. The freeloader uses dif-
ferent strategies, which are described in the text.

as all DHT operations (get/put) and all churn events (on-
line/offline). We could not obtain a list of the exact keys
and sizes of the objects in the DHT, but we were able to
estimate its overall size. The experiment used our network
emulator, although our code also runs on real networks.

In all experiments, we applied consistent hashing to choose
a set of 1) witnesses per node, and we configured a high audit
frequency of Tyyq;¢ = 10 secs. The buffer delay T},s was 100
ms for overlay multicast and 5 secs otherwise.

7.2 Fault injection experiments

In our first experiment, we inject a few faults into our sys-
tems. In the first scenario, three® faulty ePOST nodes I} —F3
try to censor an object O. First, a node A joins and inserts
O into the DHT. To make it easy for the three nodes, we
choose O’s key such that F1—F3 store the replicas. Then
A leaves the system and, 10 seconds later, another node B
attempts to look up the object in the DHT. The request is
routed to the faulty nodes, who reply that O does not exist.

Without PeerReview in place, lookups of O take a long
time, because ePOST’s archival store has to retrieve the
missing object each time. Moreover, this state can persist
indefinitely, because the system cannot identify and remove
the faulty nodes*. With PeerReview, however, the faulty
nodes are exposed after their first incorrect response. The
effect is the same as if F; had left the system: ePOST re-
pairs its routing tables, new replicas of O are restored from
ePOST’s archival background store and subsequent lookups
of object O succeed immediately. We note that this is possi-
ble even though A and B never communicate directly; they
are never even online at the same time.

Our second experiment tests overlay multicast’s response
to freeloaders. We set up three multicasts, each with one
source, 100 clients, 10 trees, and @ = 2 witnesses per

3ePOST stores three full replicas of each object in its DHT
plus a number of erasure-coded fragments in its archival
store. The archival store is accessed only if the object is
not found in the DHT.

“Note that secure routing [11] would not solve this problem.
The lookups are delivered to the right nodes, but these nodes
do not respond correctly.
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Run Min Avg Max
nfs 66 us 78 us 99 us
nfs+wrap 91 ps 113 ps 136 ps
peerreview-nosig 140 ps 144 ps 241 ps
peerreview-1024 | 1,591 ps | 1,624 ps | 1,938 pus

Table 1: Round-trip time for a NULL RPC.

node. One of the clients either behaved as expected (“Co-
operative”) or freeloaded with a "Reluctant” strategy, for-
warding content only when challenged by its witnesses, or
freeloaded with a “Silent” strategy, refusing to forward any
content. Without PeerReview, both strategies would enable
the freeloader to receive all content without forwarding any
content.

With PeerReview in place (Figure 4), the “Reluctant”
strategy still enables the freeloader to receive most of the
content in time but it must send more traffic than with the
cooperative strategy because it cannot avoid forwarding each
message eventually, and it must constantly answer challenges
sent to it via its witnesses. The “Silent” strategy, by contrast,
causes the freeloader to be exposed, so the other nodes stop
sending content to it. Thus, both freeloading strategies are
unattractive for the freeloader.

7.3 Message latency

PeerReview increases the latency of message transfers be-
cause the sender must sign each message before transmitting
it, and the receiver must check the signature before accept-
ing the message. Also, both sides must append an entry to
their log.

To quantify the impact, we set up an experiment in which
we measured the latency of an NFS NULL request (essen-
tially a no-op). This is a worst-case scenario in terms of the
impact on message latency: both the propagation delay and
the processing time are very small, so the additional latency
has a high impact. Table 1 shows our results. ‘Nfs’ is the
bare NF'S server; ‘nfs+wrap’ adds the cost of invoking the
user-level wrapper for each RPC request and each response;
and ‘peerreview-nosig’ adds the PeerReview wrapper with
dummy signatures. The final result is for the full PeerRe-
view protocol with 1024-bit RSA keys.

Our results show that the overhead is dominated by the
time needed to generate and verify cryptographic signatures.
Each RPC requires two messages, and for each message, a
signature must be generated by the sender and verified by
the receiver. This adds a constant delay that depends on the
key length and the cryptographic algorithm used. For RSA-
1024, the delay is about 1.5 ms per RPC, which matters
for local-area applications with many small requests but is
insignificant for wide-area applications. Moreover, if we use
the more efficient ESIGN algorithm with 2048-bit keys, two
signatures can be generated and verified in less than 250 us
on the same hardware. As an additional optimization, small
messages could be signed in batches.

7.4 Throughput

In configurations where nodes are witnesses for each other,
a node must replay and check requests directed to 1 other
nodes, as part of its responsibility as a witness. Hence, we
expect the average throughput of each node to drop to ﬁ
of its capacity.
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Figure 5: Throughput results for random 1 kB NFS
read accesses over 10 GB of data.

To verify this, we deployed our network filesystem with
four servers, using bare NFS in one experiment and adding
PeerReview with 1) = 2 witnesses per server in another.
Fach server exported 10 GB worth of data. Then we sent
random 1 kB read requests to each server at a constant rate,
and we measured the average request latency. When the
request rate reaches the server’s capacity, we expect the la-
tency to increase sharply. Figure 5 shows our results for a
single server. As expected, throughput drops to approxi-
mately one-third with PeerReview enabled.

However, if the workload is bursty, PeerReview can tem-
porarily increase its throughput by deferring audits to pe-
riods of low load, at the expense of a slightly higher time
to detection. We repeated the previous experiment with
short request bursts (see “audits deferred” in Figure 5) and
found that under these conditions, the PeerReview-enabled
servers could almost reach the full throughput of the un-
modified NFS server. This is important because, in prac-
tice, most systems experience bursty and/or diurnal work-
loads. With a sufficiently high T4+, these systems can
profit from accountability without having to pay for it with
a lower throughput.

7.5 CPU overhead

If a PeerReview-enabled node handles many very short re-
quests, the cryptographic operations required for each mes-
sage can form a bottleneck. Suppose verifying one signature
and creating another takes ¢ seconds. Then a node cannot
respond to more than % incoming messages per second, even
if the actual processing takes no time at all. However, con-
current signature generations are trivially parallelizable, so
the problem can be overcome by using more CPUs or a CPU
with multiple cores.

To quantify this, we saturated a PeerReview-enabled NFS
server with NULL RPCs and found that it could handle
3,900 RPCs per second with one of the two CPUs disabled.
When we enabled the second CPU, the throughput rose to
7,500 RPCs per second, a 92% increase. This shows that
PeerReview can easily take advantage of additional CPUs.
Because multi-core CPUs will become the standard, we ex-
pect that most applications will not be limited by the cost
of asymmetric cryptography.

7.6 Network traffic and disk space

PeerReview requires network bandwidth for auditing and
consistency checking, and disk space to store logs and ev-
idence. As discussed in Section 4, the overhead depends
mainly on the number 1 of witnesses per node. To quan-
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Figure 6: Average network traffic in ePOST.

tify this, we used our ePOST application and the trace from
a deployment with real users. We replayed the trace sev-
eral times, varying the parameter v, and we measured the
average number of bytes sent per node per hour. We also
measured the average log size.

Figure 6 shows our results. With ¢ = 5 witnesses, the
average network traffic of an ePOST node increased from
18.0 Kbps to 80.5 Kbps. The overhead is initially dominated
by the audits, but their share grows only with O(v), whereas
the consistency protocol’s share grows with O(x?). We also
note that our optimizations from Section 5.1 are effective;
without them, the audit traffic would be at least 1 times
the payload.

PeerReview adds a considerable amount of network traffic.
However, the bulk of the additional network traffic is caused
by auditing and consistency. With the typical bursty or
diurnal workloads that many systems experience, both of
these tasks can be deferred to periods of low load. Thus,
they do not necessarily reduce the peak throughput of the
system, nor do they increase the peak network traffic.

On average, each node’s log grew at a rate of 14.4 MB per
hour, independent of the parameter ). This means that a
year’s log can be kept in ePOST in less than 125 GB of disk
storage per node. In the multicast experiment, the log grew
at a rate of 147 MB per hour. However, this includes 135 MB
of streamed content, which could be safely discarded after a
few minutes.

7.7 Scalability

In a system with a large number of nodes, it can be difficult
to ensure an absolute bound on the number of faulty nodes.
Instead, a bound on the fraction ¢ of faulty nodes is often
assumed. To maintain PeerReview’s completeness guaran-
tees, we must choose ¢ = [@N] in this case; otherwise, all
witnesses of a faulty node could also be faulty. Because the
consistency protocol creates a per-node overhead that grows
with O(2)?), we arrive at an overhead of O(N?). Extrapolat-
ing from the results in Figure 6, and assuming that each node
has a broadband connection with an upstream bandwidth of
512 Kbps, ePOST should be able to scale to a configura-
tion with ¢ = 13 witnesses. Assuming a bound of ¢ = 10%
faulty nodes, the system would scale to about 130 nodes with
broadband connections.

However, scalability can be improved considerably by re-
laxing PeerReview’s guarantees as described in Section 4.11.
We implemented smaller witness sets and randomized consis-
tency checking for both ePOST and overlay multicast. Fig-
ure 7 shows how the per-node traffic grows with the system
size N if we assume a bound of ¢ = 10% faulty nodes and
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Py = P,, = 107%. When both modifications are combined,
ePOST scales to over 10,000 nodes and overlay multicast to
at least 1,000 nodes with broadband connections.

7.8 Additional benefits

While experimenting with PeerReview, we discovered some
unexpected benefits. PeerReview turned out to be a useful
tool for tracking down race conditions and other ‘heisen-
bugs’. These bugs are exposed by PeerReview because they
typically occur either during execution or during replay, but
not both. In this case, PeerReview conveniently produces
evidence that can be used to reproduce the bug. We found
several of these bugs in the original ePOST codebase, and
these have been confirmed by the ePOST developers.

Another unexpected benefit was the ability to check for
protocol conformance in a system that contains more than
one implementation of the same protocol. Because each
node uses its own implementation as a reference when wit-
nessing another node, deviations from the protocol (e.g.
in corner cases) can be detected. In this case, PeerRe-
view provides evidence that can be used to reproduce the
different behavior.

8. CONCLUSION

In this paper, we have described PeerReview, a general and
practical system that provides accountability and fault de-
tection for distributed systems. PeerReview guarantees the
eventual detection of all Byzantine faults whose effects are
observed by a correct node. Verifiable evidence of a fault
is irrefutably linked to a faulty node, while correct nodes
can defend themselves against false accusations. We ap-
plied PeerReview to three sample applications and experi-
mentally evaluated the resultant systems. Our experiments
indicate that PeerReview is practical and useful for a range
of distributed applications. Despite its strong guarantees,
PeerReview scales to moderately large systems; however, by
relaxing completeness in favor of a probabilistic detection
guarantee, PeerReview can scale to very large systems.
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