
Do incentives build robustness in BitTorrent?

Michael Piatek∗ Tomas Isdal∗ Thomas Anderson∗ Arvind Krishnamurthy∗ Arun Venkataramani†

Abstract
A fundamental problem with many peer-to-peer systems
is the tendency for users to “free ride”—to consume re-
sources without contributing to the system. The popular
file distribution tool BitTorrent was explicitly designed to
address this problem, using a tit-for-tat reciprocity strat-
egy to provide positive incentives for nodes to contribute
resources to the swarm. While BitTorrent has been ex-
tremely successful, we show that its incentive mecha-
nism is not robust to strategic clients. Through perfor-
mance modeling parameterized by real world traces, we
demonstrate that all peers contribute resources that do
not directly improve their performance. We use these re-
sults to drive the design and implementation of BitTyrant,
a strategic BitTorrent client that provides a median 70%
performance gain for a 1 Mbit client on live Internet
swarms. We further show that when applied universally,
strategic clients can hurt average per-swarm performance
compared to today’s BitTorrent client implementations.

1 Introduction
A fundamental problem with many peer-to-peer systems
is the tendency of users to “free ride”—consume re-
sources without contributing to the system. In early peer-
to-peer systems such as Napster, the novelty factor suf-
ficed to draw plentiful participation from peers. Sub-
sequent peer-to-peer systems recognized and attempted
to address the free riding problem; however, their fixes
proved to be unsatisfactory, e.g., “incentive priorities” in
Kazaa could be spoofed; currency in MojoNation was
cumbersome; and the AudioGalaxy Satellite model of
“always-on” clients has not been taken up. More re-
cently, BitTorrent, a popular file distribution tool based
on a swarming protocol, proposed a tit-for-tat (TFT)
strategy aimed at incenting peers to contribute resources
to the system and discouraging free riders.

The tremendous success of BitTorrent suggests that
TFT is successful at inducing contributions from ratio-
nal peers. Moreover, the bilateral nature of TFT allows
for enforcement without a centralized trusted infrastruc-
ture. The consensus appears to be that “incentives build
robustness in BitTorrent” [3, 17, 2, 11].

In this paper, we question this widely held belief. To
this end, we first conduct a large measurement study of
real BitTorrent swarms to understand the diversity of Bit-

∗Dept. of Computer Science and Engineering, Univ. of Washington
†Dept. of Computer Science, Univ. of Massachusetts Amherst

Torrent clients in use today, realistic distributions of peer
upload capacities, and possible avenues of strategic peer
behavior in popular clients. Based on these measure-
ments, we develop a simple model of BitTorrent to corre-
late upload and download rates of peers. We parametrize
this model with the measured distribution of peer upload
capacities and discover the presence of significant altru-
ism in BitTorrent, i.e., all peers regularly make contribu-
tions to the system that do not directly improve their per-
formance. Intrigued by this observation, we revisit the
following question: can a strategic peer game BitTor-
rent to significantly improve its download performance
for the same level of upload contribution?

Our primary contribution is to settle this question in
the affirmative. Based on the insights gained from our
model, we design and implement BitTyrant, a modified
BitTorrent client designed to benefit strategic peers. The
key idea is to carefully select peers and contribution rates
so as to maximize download per unit of upload band-
width. The strategic behavior of BitTyrant is executed
simply through policy modifications to existing clients
without any change to the BitTorrent protocol. We eval-
uate BitTyrant performance on real swarms, establish-
ing that all peers, regardless of upload capacity, can sig-
nificantly improve download performance while reduc-
ing upload contributions. For example, a client with
1 Mb/s upload capacity receives a median 70% perfor-
mance gain from using BitTyrant.

How does use of BitTyrant by many peers in a swarm
affect performance? We find that peers individually ben-
efit from BitTyrant’s strategic behavior, irrespective of
whether or not other peers are using BitTyrant. Peers not
using BitTyrant can experience degraded performance
due to the absence of altruisitic contributions. Taken to-
gether, these results suggest that “incentives do not build
robustness in BitTorrent”.

Robustness requires that performance does not de-
grade if peers attempt to strategically manipulate the sys-
tem, a condition BitTorrent does not meet today. Al-
though BitTorrent peers ostensibly make contributions to
improve performance, we show that much of this contri-
bution is unnecessary and can be reallocated or withheld
while still improving performance for strategic users.
Average download times currently depend on significant
altruism from high capacity peers that, when withheld,
reduces performance for all users.

In addition to our primary contribution, BitTyrant, our



efforts to measure and model altruism in BitTorrent are
independently noteworthy. First, although modeling Bit-
Torrent has seen a large body of work (see Section 6),
our model is simpler and still suffices to capture the
correlation between upload and download rates for real
swarms. Second, existing studies recognizing altruism
in BitTorrent consider small simulated settings or few
swarms that poorly capture the diversity of deployed Bit-
Torrent clients, peer capacities, churn, and network con-
ditions. Our evaluation is more comprehensive. We use
trace driven modeling to drive the design of BitTyrant,
which we then evaluate on more than 100 popular, real
world swarms as well as synthetic swarms on PlanetLab.
Finally, we make BitTyrant available publicly as well as
source code and anonymized traces gathered in our large-
scale measurement study.

The remainder of this paper is organized as fol-
lows. Section 2 provides an overview of the BitTor-
rent protocol and our measurement data, which we use
to parametrize our model. Section 3 develops a simple
model illustrating the sources and extent of altruism in
BitTorrent. Section 4 presents BitTyrant, a modified Bit-
Torrent client for strategic peers, which we evaluate in
Section 5. In Section 6, we discuss related work and
conclude in Section 7.

2 BitTorrent overview
This section presents an overview of the BitTorrent pro-
tocol, its implementation parameters, and the measure-
ment data we use to seed our model.

2.1 Protocol

BitTorrent focuses on bulk data transfer. All users in a
particular swarm are interested in obtaining the same file
or set of files. In order to initially connect to a swarm,
peers download a metadata file, called a torrent, from
a content provider, usually via a normal HTTP request.
This metadata specifies the name and size of the file to
be downloaded, as well as SHA-1 fingerprints of the data
blocks (typically 64–512 KB) that comprise the content
to be downloaded. These fingerprints are used to verify
data integrity. The metadata file also specifies the address
of a tracker server for the torrent, which coordinates
interactions between peers participating in the swarm.
Peers contact the tracker upon startup and departure as
well as periodically as the download progresses, usually
with a frequency of 15 minutes. The tracker maintains a
list of currently active peers and delivers a random subset
of these to clients, upon request.

Users in possession of the complete file, called seeds,
redistribute small blocks to other participants in the
swarm. Peers exchange blocks and control information
with a set of directly connected peers we call the lo-
cal neighborhood. This set of peers, obtained from the

Figure 1: Cumulative distribution of raw bandwidth ca-
pacity for BitTorrent peers as well as the “equal split” ca-
pacity distribution for active set peers, assuming clients
use the reference implementation of BitTorrent.

tracker, is unstructured and random, requiring no special
join or recovery operations when new peers arrive or ex-
isting peers depart. The control traffic required for data
exchange is minimal: each peer transmits messages in-
dicating the data blocks they currently possess and mes-
sages signaling their interest in the blocks of other peers.

We refer to the set of peers to which a BitTorrent client
is currently sending data as its active set. BitTorrent uses
a rate-based TFT strategy to determine which peers to in-
clude in the active set. Each round, a peer sends data to
unchoked peers from which it received data most rapidly
in the recent past. This strategy is intended to provide
positive incentives for contributing to the system and in-
hibit free-riding. However, clients also send data to a
small number of randomly chosen peers who have not
“earned” such status. Such peers are said to be optimisti-
cally unchoked. Optimistic unchokes serve to bootstrap
new peers into the TFT game as well as to facilitate dis-
covery of new, potentially better sources of data. Peers
that do not send data quickly enough to earn reciproca-
tion are removed from the active set during a TFT round
and are said to be choked.

Modulo TCP effects and assuming last-hop bottleneck
links, each peer provides an equal share of its available
upload capacity to peers to which it is actively sending
data. We refer to this rate throughout the paper as a peer’s
equal split rate. This rate is determined by the upload
capacity of a particular peer and the size of its active
set. In the official reference implementation of BitTor-
rent, active set size is proportional to

√
upload capacity

(details in Appendix); although in other popular BitTor-
rent clients, this size is static.

2.2 Measurement

BitTorrent’s behavior depends on a large number of pa-
rameters: topology, bandwidth, block size, churn, data
availability, number of directly connected peers, active
TFT transfers, and number of optimistic unchokes. Fur-
thermore, many of these parameters are a matter of pol-



Implementation Percentage share
Azureus 47%

BitComet 20%
µtorrent 15%
BitLord 6%

Unknown 3%
Reference 2%

Remaining 7%

Table 1: BitTorrent implementation usage as drawn from
measurement data.

icy unspecified by the BitTorrent protocol itself. These
policies may vary among different client implementa-
tions, and defaults may be overridden by explicit user
configuration. To gain an understanding of BitTorrent’s
behavior and the diversity of implementations in the
wild, we first conducted a measurement study of live Bit-
Torrent swarms to ascertain client characteristics.

By making use of the opportunistic measurement tech-
niques presented by Madhyastha et al. [14], we gather
empirical measurements of BitTorrent swarms and hosts.
Our measurement client connected to a large number of
swarms and waited for an optimistic unchoke from each
unique peer. We then estimated the upload capacity of
that client using the multiQ tool [10]. Previous char-
acterizations of end-host capacities of peer-to-peer par-
ticipants were conducted by Saroiu, et al. [18]. We up-
date these results using more recent capacity estimation
tools. We observed 301,595 unique BitTorrent IP ad-
dresses over a 48 hour period during April, 2006 from
3,591 distinct ASes across 160 countries. The upload ca-
pacity distribution for typical BitTorrent peers is given in
Figure 1 along with the distribution of equal split rates
that would arise from peers using the reference BitTor-
rent implementation with no limit on upload rates.

3 Modeling altruism in BitTorrent
In this section, we examine two questions relevant to un-
derstanding how incentives impact performance in Bit-
Torrent: how much altruism is present, and what are the
sources of altruism? The first question suggests whether
or not strategizing is likely to improve performance while
the second informs design. Answering these questions
for real world swarms is complicated by the diversity of
implementations and a myriad of configuration parame-
ters. Here, we take a restricted view and develop a model
of altruism arising from our observed capacity distribu-
tion and the default parameter settings of the reference
implementation of BitTorrent.

We make several assumptions to simplify our analysis
and provide a conservative bound on altruism. Because
our assumptions are not realistic for all swarms, our mod-
eling results are not intended to be predictive. Rather, our
results simply suggest potential sources of altruism and

the reasons they emerge in BitTorrent swarms today. We
exploit these sources of altruism in the design of our real
world strategic client, discussed in Section 4.

• Representative distribution: The CDF shown in Fig-
ure 1 is for the bandwidth capacity of observed IP ad-
dresses over many swarms. The distribution of a typ-
ical swarm may not be identical. For instance, high
capacity peers tend to finish more quickly than low
capacity peers, but they may also join more swarms
simultaneously. If they join only a single swarm and
leave shortly after completion, the relative proportion
of low capacity peers would increase over the lifetime
of a swarm.

• Uniform sizing: Peers, other than the modified client,
use the active set sizing recommended by the reference
BitTorrent implementation. In practice, other BitTor-
rent implementations are more popular (see Table 1)
and have different active set sizes. As we will show,
aggressive active set sizes tend to decrease altruism,
and the reference implementation uses the most ag-
gressive strategy among the popular implementations
we inspected. As a result, our model provides a con-
servative estimate of altruism.

• No steady state: Active sets are comprised of peers
with random draws from the overall upload capacity
distribution. If churn is low, over time TFT may match
peers with similar equal split rates, biasing active set
draws. We argue in the next section that BitTorrent is
slow to reach steady-state, particularly for high capac-
ity peers.

• High block availability: Swarm performance is lim-
ited by upload capacity, i.e., peers will always be able
to find interesting data to download. We find that al-
though the reference BitTorrent implementation is de-
signed to ensure high availability of interesting blocks,
in practice, static active set sizing in some clients may
degrade block availability for high capacity peers.

These assumptions allow us to model altruism in Bit-
Torrent in terms of the upload capacity distribution only.
The model is built on expressions for the probability
of TFT reciprocation, expected download rate, and ex-
pected upload rate. In this section, we focus on the main
insights provided by our model. The precise expressions
are listed in detail in the Appendix.

3.1 Tit-for-tat matching time

Since our subsequent modeling results assume that
swarms do not reach steady state, we first examine the
convergence properties of the TFT strategy used to match
peers of similar capacity. By default, the reference Bit-
Torrent client optimistically unchokes two peers every
30 seconds in an attempt to explore the local neighbor-
hood for better reciprocation pairings. Since all peers are



Figure 2: Assuming a peer set of infinite size, the ex-
pected time required for a new peer to discover enough
peers of equal or greater equal split capacity to fill its
active set.

performing this exploration concurrently, every 30 sec-
onds a peer can expect to explore two candidate peers
and be explored by two candidate peers. Since we know
the equal split capacity distribution, we can express the
probability of finding a peer with equal or greater equal
split capacity—in a given number of 30 second rounds.
Taking the expectation and multiplying it by the size of
the active set gives an estimate of how long a new peer
will have to wait before filling its active set with such
peers.

Figure 2 shows this expected time for our observed
bandwidth distribution. These results suggest that TFT
as implemented does not quickly find good matches for
high capacity peers, even in the absence of churn. For
example, a peer with 6,400 KB/s upload capacity would
transfer more than 4 GB of data before reaching steady
state. In practice, convergence time is likely to be even
longer. We consider a peer as being “content” with a
matching once its equal split is matched or exceeded by a
peer. However, one of the two peers in any matching that
is not exact will be searching for alternates and switching
when they are discovered, causing the other to renew its
search. The long convergence time suggests a potential
source of altruism: high capacity clients are forced to
peer with those of low capacity while searching for better
peers via optimistic unchokes.

3.2 Probability of reciprocation

A node Q sends data only to those peers in its active
transfer set, reevaluated every 10 seconds. If a peer P
sends data to Q at a rate fast enough to merit inclusion
in Q’s active transfer set, P will receive data during the
next TFT round, and we say Q reciprocates with P .

Reciprocation from Q to P is determined by two fac-
tors: the rate at which P sends data to Q and the rates
at which other peers send data to Q. If all other peers in
Q’s current active set send at rates greater than P , Q will
not reciprocate with P .

Figure 3 gives the probability of reciprocation in terms

Figure 3: Reciprocation probability for a peer as a func-
tion of raw upload capacity as well as reference BitTor-
rent equal split bandwidth. Reciprocation probability is
not strictly increasing in raw rate due to the sawtooth in-
crease in active set size (see Table 2 in Appendix).

of both raw upload capacity and, more significantly, the
equal split rate. The sharp jump in reciprocation prob-
ability suggests a potential source of altruism in BitTor-
rent: equal split bandwidth allocation among peers in the
active set. Beyond a certain equal split rate (∼14 KB/s in
Figure 3), reciprocation is essentially assured, suggesting
that further contribution may be altruistic.

3.3 Expected download rate

Each TFT round, a peer P receives data from both TFT
reciprocation and optimistic unchokes. Reciprocation is
possible only from those peers in P ’s active set and de-
pends on P ’s upload rate, while optimistic unchokes may
be received from any peer in P ’s local neighborhood, re-
gardless of upload rate. In the reference BitTorrent client,
the number of optimistic unchoke slots defaults to 2 and
is rotated randomly. As each peer unchokes two peers
per round, the expected number of optimistic unchokes
P will receive is also two for a fixed local neighborhood
size.

Figure 4 gives the expected download throughput for
peers as a function of upload rate for our observed band-
width distribution. The sub-linear growth suggests sig-
nificant unfairness in BitTorrent, particularly for high ca-
pacity peers. This unfairness improves performance for
the majority of low capacity peers, suggesting that high
capacity peers may be able to better allocate their upload
capacity to improve their own performance.

3.4 Expected upload rate

Having considered download performance, we turn next
to upload contribution. Two factors can control the up-
load rate of a peer: data availability and capacity limit.
When a peer is constrained by data availability, it does
not have enough data of interest to its local neighborhood
to saturate its capacity. In this case, the peer’s upload ca-
pacity is wasted and utilization suffers. Because of the
dependence of upload utilization on data availability, it
is crucial that a client downloads new data at a rate fast



Figure 4: Expectation of download performance as a
function of upload capacity. Although this represents a
small portion of the spectrum of observed bandwidth ca-
pacities, ∼80% of samples are of capacity ≤ 200 KB/s.

enough, so that the client can redistribute the downloaded
data and saturate its upload capacity. We have found that
indeed this is the case in the reference BitTorrent client
because of the square root growth rate of its active set
size.

In practice, most popular clients do not follow this dy-
namic strategy and instead make active set size a config-
urable, but static, parameter. For instance, the most pop-
ular BitTorrent client in our traces, Azureus, suggests a
default active set size of four—appropriate for many ca-
ble and DSL hosts, but far lower than is required for high
capacity peers. We explore the impact of active set sizing
further in Section 4.1.

3.5 Modeling altruism

Given upload and download throughput, we have all the
tools required to compute altruism. We consider two def-
initions of altruism intended to reflect two perspectives
on what constitutes strategic behavior. We first consider
altruism to be simply the difference between expected
upload rate and download rate. Figure 5 shows altruism
as a percentage of upload capacity under this definition
and reflects the asymmetry of upload contribution and
download rate discussed in Section 3.3. The second def-
inition is any upload contribution that can be withdrawn
without loss in download performance. This is shown in
Figure 6.

In contrast to the original definition, Figure 6 suggests
that all peers make altruistic contributions that could
be eliminated. Sufficiently low bandwidth peers almost
never earn reciprocation, while high capacity peers send
much faster than the minimal rate required for recipro-
cation. Both of these effects can be exploited. Note
that low bandwidth peers, despite not being reciprocated,
still receive data in aggregate faster than they send data.
This is because they receive indiscriminate optimistic un-
chokes from other users in spite of their low upload ca-
pacity.

Figure 5: Expected percentage of upload capacity which
is altruistic as defined by Equation 5 as a function of rate.
The sawtooth increase is due to the sawtooth growth of
active set sizing and equal split rates arising from integer
rounding (see Table 2).

Figure 6: Expected percentage of upload capacity which
is altruistic when defined as upload capacity not resulting
in direct reciprocation.

3.6 Validation

Our modeling results suggest that at least part of the al-
truism in BitTorrent arises from the sub-linear growth
of download throughput as a function of upload rate.
We validate this key result using our measurement data.
Each time a BitTorrent client receives a complete data
block from another peer, it broadcasts a ‘have’ mes-
sage indicating that it can redistribute that block to other
peers. By averaging the rate of have messages over the
duration our measurement client observes a peer, we can
infer the peer’s download rate. Figure 7 shows this in-
ferred download rate as a function of equal split rate, i.e.,
the throughput seen by the measurement client when op-
timistically unchoked. This data is drawn from our mea-
surements and includes 63,482 peers.

These results indicate an even higher level of altruism
than that predicted by our model (Figure 4). Note that
equal split rate, the parameter of Figure 7, is a conserva-
tive lower bound on total upload capacity, shown in Fig-
ure 4, since each client sends data to many peers simulta-
neously. For instance, peers contributing ∼250 KB/s to
our measurement client had an observed download rate
of 150 KB/s. Our model suggests that such contribution,
even when split among multiple peers, should induce a



Figure 7: Measured validation of sub-linear growth in
download throughput as a function of rate. Each point
represents an average taken over all peers with measured
equal split capacity in the intervals between points.

download rate of more than 200 KB/s. We believe this
underestimate is due to more conservative active set sizes
in practice than those assumed in our model.

4 Building BitTyrant: A strategic client
The modeling results of Section 3 suggest that altruism
in BitTorrent serves as a kind of progressive tax. As
contribution increases, performance improves, but not
in direct proportion. In this section, we describe the
design and implementation of BitTyrant, a client opti-
mized for strategic users. We chose to base BitTyrant
on the Azureus client in an attempt to foster adoption, as
Azureus is the most popular client in our traces.

If performance for low capacity peers is disproportion-
ately high, a strategic user can simply exploit this unfair-
ness by masquerading as many low capacity clients to
improve performance [4]. Also, by flooding the local
neighborhood of high capacity peers, low capacity peers
can inflate their chances of TFT reciprocation by domi-
nating the active transfer set of a high capacity peer. In
practice, these attacks are mitigated by a common client
option to refuse multiple connections from a single IP
address. Resourceful peers might be able to coordinate
multiple IP addresses, but such an attack is beyond the
capabilities of most users. We focus instead on practical
strategies that can be employed by typical users.

The unfairness of BitTorrent has been noted in previ-
ous studies [2, 5, 7], many of which include protocol re-
designs intended to promote fairness. However, a clean-
slate redesign of the BitTorrent protocol ignores a differ-
ent but important incentives question: how to get users
to adopt it? As shown in Section 3, the majority of Bit-
Torrent users benefit from its unfairness today. Designs
intended to promote fairness globally at the expense of
the majority of users seem unlikely to be adopted. Rather
than focus on a redesign at the protocol level, we focus
on BitTorrent’s robustness to strategic behavior and find
that strategizing can improve performance in isolation
while promoting fairness at scale.

4.1 Maximizing reciprocation

The modeling results of Section 3 and the operational
behavior of BitTorrent clients suggest the following three
strategies to improve performance.
• Maximize reciprocation bandwidth per connection:

All things being equal, a node can improve its per-
formance by finding peers that reciprocate with high
bandwidth for a low offered rate, dependent only on
the other peers of the high capacity node. The recipro-
cation bandwidth of a peer is dependent on its upload
capacity and its active set size. By discovering which
peers have large reciprocation bandwidth, a client can
optimize for a higher reciprocation bandwidth per con-
nection.

• Maximize number of reciprocating peers: A client can
expand its active set to maximize the number of peers
that reciprocate until the marginal benefit of an addi-
tional peer is outweighed by the cost of reduced recip-
rocation probability from other peers.

• Deviate from equal split: On a per-connection basis, a
client can lower its upload contribution to a particular
peer as long as that peer continues to reciprocate. The
bandwidth savings could then be reallocated to new
connections, resulting in an increase in the overall re-
ciprocation throughput.
The modeling results indicate that these strategies are

likely to be effective. The largest source of altruism
in our model is unnecessary contribution to peers in a
node’s active set. The reciprocation probability shown in
Figure 3 indicates that strategically choosing equal split
bandwidth can reduce contribution significantly for high
capacity peers with only a marginal reduction in recip-
rocation probability. A peer with equal split capacity of
100 KB/s, for instance, could reduce its rate to 15 KB/s
with a reduction in expected probability of reciprocation
of only 1%. However, reducing from 15 KB/s to 10 KB/s
would result in a decrease of roughly 40%.

The reciprocation behavior points to a performance
trade-off. If the active set size is large, equal split
capacity is reduced, reducing reciprocation probability.
However, an additional active set connection is an addi-
tional opportunity for reciprocation. To maximize per-
formance, a peer should increase its active set size un-
til an additional connection would cause a reduction in
reciprocation across all connections sufficient to reduce
overall download performance.

If the equal split capacity distribution of the swarm is
known, we can derive the active set size that maximizes
the expected download rate. For our observed bandwidth
distribution, Figure 8 shows the download rate as a func-
tion of the active set size for a peer with 300 KB/s upload
capacity as well as the active set size that maximizes it.
The graph also implicitly reflects the sensitivity of recip-



Figure 8: Left: The expected download performance of a client with 300 KB/s upload capacity for increasing active
set size. Right: The performance-maximizing active set size for peers of varying rate. The strategic maximum is linear
in upload capacity, while the reference implementation of BitTorrent suggests active size ∼

√
rate. Although several

hundred peers may be required to maximize throughput, most trackers return fewer than 100 peers per request.

rocation probability to equal split rate.
Figure 8 is for a single strategic peer and suggests that

strategic high capacity peers can benefit much more by
manipulating their active set size. Our example peer with
upload capacity 300 KB/s realizes a maximum down-
load throughput of roughly 450 KB/s. However, increas-
ing reciprocation probability via active set sizing is ex-
tremely sensitive—throughput falls off quickly after the
maximum is reached. Further, it is unclear if active set
sizing alone would be sufficient to maximize reciproca-
tion in an environment with several strategic clients.

These challenges suggest that any a priori active set
sizing function may not suffice to maximize download
rate for strategic clients. Instead, they motivate the dy-
namic algorithm used in BitTyrant that adaptively mod-
ifies the size and membership of the active set and the
upload bandwidth allocated to each peer (see Figure 9).

In both BitTorrent and BitTyrant, the set of peers that
will receive data during the next TFT round is decided by
the unchoke algorithm once every 10 seconds. BitTyrant
differs from BitTorrent as it dynamically sizes its active
set and varies the sending rate per connection. For each
peer p, BitTyrant maintains estimates of the upload rate
required for reciprocation, up, as well as the download
throughput, dp, received when p reciprocates. Peers are
ranked by the ratio dp/up and unchoked in order until the
sum of up terms for unchoked peers exceeds the upload
capacity of the BitTyrant peer.

The rationale underlying this unchoke algorithm is
that the best peers are those that reciprocate most for the
least number of bytes contributed to them, given accurate
information regarding up and dp. Implicit in the strategy
are the following assumptions and characteristics:

• The strategy attempts to maximize the download rate
for a given upload budget. The ranking strategy cor-
responds to the value-density heuristic for the knap-
sack problem. In practice, the download benefit (dp)
and upload cost (up) are not known a priori. The up-

For each peer p, maintain estimates of expected download
performance dp and upload required for reciprocation up.

Initialize up and dp assuming the bandwidth
distribution in Figure 2.

dp is initially the expected equal split capacity of p.

up is initially the rate just above the step in the
reciprocation probability.

Each round, rank order peers by the ratio dp/up and unchoke
those of top rank until the upload capacity is reached.

d0

u0
,
d1

u1
,
d2

u2
,
d3

u3
,
d4

u4| {z }
choose k |

Pk
i=0 ui ≤ cap

, ...

At the end of each round for each unchoked peer:

If peer p does not unchoke us: up ← (1 + δ)up

If peer p unchokes us: dp ← observed rate.

If peer p has unchoked us for the last r rounds:
up ← (1− γ)up

Figure 9: BitTyrant unchoke algorithm

date operation dynamically estimates these rates and,
in conjunction with the ranking strategy, optimizes
download rate over time.

• BitTyrant is designed to tap into the latent altruism in
most swarms by unchoking the most altruistic peers.
However, it will continue to unchoke peers until it ex-
hausts its upload capacity even if the marginal utility
is sub-linear. This potentially opens BitTyrant itself to
being cheated, a topic we return to later.

• The strategy can be easily generalized to handle con-
current downloads from multiple swarms. A client can
optimize the aggregate download rate by ordering the
dp/up ratios of all connections across swarms, thereby



dynamically allocating upload capacity to all peers.
User-defined priorities can be implemented by using
scaling weights for the dp/up ratios.

The algorithm is based on the ideal assumption
that peer capacities and reciprocation requirements are
known. We discuss how to predict them next.

Determining upload contributions: The BitTyrant
unchoke algorithm must estimate up, the upload contri-
bution to p that induces reciprocation. We initialize up

based on the distribution of equal split capacities seen
in our measurements, and then periodically update it de-
pending on whether p reciprocates for an offered rate.
In our implementation, up is decreased by γ = 10% if
the peer reciprocates for r = 3 rounds, and increased by
δ = 20% if the peer fails to reciprocate after being un-
choked during the previous round. We use small multi-
plicative factors since the spread of equal split capacities
is typically small in current swarms. Although a natu-
ral first choice, we do not use a binary search algorithm,
which maintains upper and lower bounds for upload con-
tributions that induce reciprocation, because peer recip-
rocation changes rapidly under churn and bounds on
reciprocation-inducing uploads would eventually be vi-
olated.

Estimating reciprocation bandwidths: For peers that
unchoke the BitTyrant client, dp is simply the rate at
which data was obtained from p. Note that we do not
use a packet-pair based bandwidth estimation technique
as suggested by Bharambe [2], but rather consider the
average download rate over a TFT round. Based on our
measurements, not presented here due to space limita-
tions, we find that packet-pair based bandwidth estimates
do not accurately predict peers’ equal split capacities due
to variability in active set sizes and end-host traffic shap-
ing. The observed rate over a longer period is the only
accurate estimate, a sentiment shared by Cohen [3].

Of course, this estimate is not available for peers that
have not uploaded any data to the BitTyrant client. In
such cases, BitTyrant approximates dp for a given peer
p by measuring the frequency of block announcements
from p. The rate at which new blocks arrive at p provides
an estimate of p’s download rate, which we use as an es-
timate of p’s total upload capacity. We then divide the
estimated capacity by the Azureus recommended active
set size for that rate to estimate p’s equal split rate. This
strategy is likely to overestimate the upload capacities
of unobserved peers, serving to encourage their selection
from the ranking of dp/up ratios. At present, this pref-
erence for exploration may be advantageous due to the
high end skew in altruism. Discovering high end peers
is rewarding: between the 95th and 98th percentiles, re-
ciprocation throughput doubles. Of course, this strategy
may open BitTyrant itself to exploitation, e.g., if a peer

rapidly announces false blocks. We discuss how to make
BitTyrant robust in Sections 4.3 and 5.

4.2 Sizing the local neighborhood

Existing BitTorrent clients maintain a pool of typically
50–100 directly connected peers. The set is sized to be
large enough to provide a diverse set of data so peers can
exchange blocks without data availability constraints.
However, the modeling results of Section 4.1 suggest
that these typical local neighborhood sizes will not be
large enough to maximize performance for high capacity
peers, which may need an active set size of several hun-
dred peers to maximize download throughput. Maintain-
ing a larger local neighborhood also increases the num-
ber of optimistic unchokes received.

To increase the local neighborhood size in BitTyrant,
we rely on existing BitTorrent protocol mechanisms and
third party extensions implemented by Azureus. We re-
quest as many peers as possible from the centralized
tracker at the maximum allowed frequency. Recently,
the BitTorrent protocol has incorporated a DHT-based
distributed tracker that provides peer information and is
indexed by a hash of the torrent. We have increased the
query rate of this as well. Finally, the Azureus imple-
mentation includes a BitTorrent protocol extension for
gossip among peers. Unfortunately, the protocol exten-
sion is push-based; it allows for a client to gossip to its
peers the identity of its other peers but cannot induce
those peers to gossip in return. As a result, we cannot
exploit the gossip mechanism to extract extra peers.

A concern when increasing the size of the local neigh-
borhood is the corresponding increase in protocol over-
head. Peers need to exchange block availability infor-
mation, messages indicating interest in blocks, and peer
lists. Fortunately, the overhead imposed by maintaining
additional connections is modest. In comparisons of Bit-
Tyrant and the existing Azureus client described in Sec-
tion 5, we find that average protocol overhead as a per-
centage of total file data received increases from 0.9% to
1.9%. This suggests that scaling the local neighborhood
size does not impose a significant overhead on BitTyrant.

4.3 Additional cheating strategies

We now discuss more strategies to improve download
performance. We do not implement these in BitTyrant
as they can be thwarted by simple fixes to clients. We
mention them here for completeness.

Exploiting optimistic unchokes: The reference Bit-
Torrent client optimistically unchokes peers randomly.
Azureus, on the other hand, makes a weighted random
choice that takes into account the number of bytes ex-
changed with a peer. If a peer has built up a deficit in
the number of traded bytes, it is less likely to be picked
for optimistic unchokes. In BitTorrent today, we observe



that high capacity peers are likely to have trading deficits
with most peers. A cheating client can exploit this by dis-
connecting and reconnecting with a different client iden-
tifier, thereby wiping out the past history and increasing
its chances of receiving optimistic unchokes, particularly
from high capacity peers. This exploit becomes ineffec-
tive if clients maintain the IP addresses for all peers en-
countered during the download and keep peer statistics
across disconnections.

Downloading from seeds: Early versions of BitTor-
rent clients used a seeding algorithm wherein seeds up-
load to peers that are the fastest downloaders, an algo-
rithm that is prone to exploitation by fast peers or clients
that falsify download rate by emitting ‘have’ messages.
More recent versions use a seeding algorithm that per-
forms unchokes randomly, spreading data in a uniform
manner that is more robust to manipulation.

Falsifying block availability: A client would prefer
to unchoke those peers that have blocks that it needs.
Thus, peers can appear to be more attractive by falsi-
fying block announcements to increase the chances of
being unchoked. In practice, this exploit is not very ef-
fective. First, a client is likely to consider most of its
peers interesting given the large number of blocks in a
typical swarm. Second, false announcements could lead
to only short-term benefit as a client is unlikely to con-
tinue transferring once the cheating peer does not satisfy
issued block requests.

5 Evaluation
To evaluate BitTyrant, we explore the performance im-
provement possible for a single strategic peer in synthetic
and current real world swarms as well as the behavior
of BitTyrant when used by all participants in synthetic
swarms.

Evaluating altruism in BitTorrent experimentally and
at scale is challenging. Traditional wide-area testbeds
such as PlanetLab do not exhibit the highly skewed band-
width distribution we observe in our measurements, a
crucial factor in determining the amount of altruism.
Alternatively, fully configurable local network testbeds
such as Emulab are limited in scale and do not incorpo-
rate the myriad of performance events typical of opera-
tion in the wide-area. Further, BitTorrent implementa-
tions are diverse, as shown in Table 1.

To address these issues, we perform two separate eval-
uations. First, we evaluate BitTyrant on real swarms
drawn from popular aggregation sites to measure real
world performance for a single strategic client. This pro-
vides a concrete measure of the performance gains a user
can achieve today. To provide more insight into how Bit-
Tyrant functions, we then revisit these results on Planet-
Lab where we evaluate sensitivity to various upload rates

Figure 10: CDF of download performance for 114 real
world swarms. Shown is the ratio between download
times for an existing Azureus client and BitTyrant. Both
clients were started simultaneously on machines at UW
and were capped at 128 KB/s upload capacity.

and evaluate what would happen if BitTyrant is univer-
sally deployed.

5.1 Single strategic peer

To evaluate performance under the full diversity of real-
istic conditions, we crawled popular BitTorrent aggrega-
tion websites to find candidate swarms. We ranked these
by popularity in terms of number of active participants,
ignoring swarms distributing files larger than 1 GB. The
resulting swarms are typically for recently released files
and have sizes ranging from 300–800 peers, with some
swarms having as many as 2,000 peers.

We then simultaneously joined each swarm with a Bit-
Tyrant client and an unmodified Azureus client with rec-
ommended default settings. We imposed a 128 KB/s up-
load capacity limit on each client and compared comple-
tion times. This represents a relatively well provisioned
peer for which Azureus has a recommended active set
size. A CDF of the ratio of original client completion
time to BitTyrant completion time is given in Figure 10.
These results demonstrate the significant, real world per-
formance boost that users can realize by behaving strate-
gically. The median performance gain for BitTyrant is a
factor of 1.72 with 25% of downloads finishing at least
twice as fast with BitTyrant. We expect relative perfor-
mance gains to be even greater for clients with greater
upload capacity.

These results provide insight into the performance
properties of real BitTorrent swarms, some of which limit
BitTyrant’s effectiveness. Because of the random set of
peers that BitTorrent trackers return and the high skew
of real world equal split capacities, BitTyrant cannot al-
ways improve performance. For instance, in BitTyrant’s
worst-performing swarm, only three peers had average
equal split capacities greater than 10 KB/s. In contrast,
the unmodified client received eight such peers. Total
download time was roughly 15 minutes, the typical min-
imum request interval for peers from the tracker. As a re-



Figure 11: Download times and sample standard devia-
tion comparing performance of a single BitTyrant client
and an unmodified Azureus client on a synthetic Planet-
Lab swarm.

sult, BitTyrant did not recover from its initial set of com-
paratively poor peers. To some extent, performance can
be based on luck with respect to the set of initial peers
returned. More often than not, BitTyrant benefits from
this, as it always requests a comparatively large set of
peers from the tracker.

Another circumstance for which BitTyrant cannot sig-
nificantly improve performance is a swarm whose ag-
gregate performance is controlled by data availability
rather than the upload capacity distribution. In the wild,
swarms are often hamstrung by the number of peers seed-
ing the file—i.e., those with a complete copy. If the ca-
pacity of these peers is low or if the torrent was only
recently made available, there may simply not be enough
available data for peers to saturate their upload capac-
ities. In other words, if a seed with 128 KB/s capac-
ity is providing data to a swarm of newly joined users,
those peers will be able to download at a rate of at most
128 KB/s regardless of their capacity. Because many
of the swarms we joined were recent, this effect may
account for the 12 swarms for which download perfor-
mance differed by less than 10%.

These scenarios can hinder the performance of Bit-
Tyrant, but they account for a small percentage of our
observed swarms overall. For most real swarms today,
users can realize significant performance benefits from
the strategic behavior of BitTyrant.

Although the performance improvements gained from
using BitTyrant in the real world are encouraging, they
provide little insight into the operation of the system at
scale. We next evaluate BitTyrant in synthetic scenar-
ios on PlanetLab to shed light on the interplay between
swarm properties, strategic behavior, and performance.
Because PlanetLab does not exhibit the highly skewed
bandwidth distribution observed in our traces, we rely on
application level bandwidth caps to artificially constrain
the bandwidth capacity of PlanetLab nodes in accor-
dance with our observed distribution. However, because
PlanetLab is often oversubscribed and shares bandwidth

equally among competing experiments, not all nodes are
capable of matching the highest values from the observed
distribution. To cope with this, we scaled by 1/10th both
the upload capacity draws from the distribution as well as
relevant experimental parameters such as file size, initial
unchoke bandwidth, and block size. This was sufficient
to provide overall fidelity to our intended distribution.

Figure 11 shows the download performance for a sin-
gle BitTyrant client as a function of rate averaged over six
trials with sample standard deviation. This experiment
was hosted on 350 PlanetLab nodes with bandwidth ca-
pacities drawn from our scaled distribution. Three seeds
with combined capacity of 128 KB/s were located at UW
serving a 5 MB file. We did not change the default seed-
ing behavior, and varying the combined seed capacity
had little impact on overall swarm performance after ex-
ceeding the average upload capacity limit. To provide
synthetic churn with constant capacity, each node’s Bit-
Tyrant client disconnected immediately upon completion
and reconnected immediately.

The results of Figure 11 provide several insights into
the operation of BitTyrant.

• BitTyrant does not simply improve performance, it
also provides more consistent performance across
multiple trials. By dynamically sizing the active set
and preferentially selecting peers to optimistically un-
choke, BitTyrant avoids the randomization present
in existing TFT implementations, which causes slow
convergence for high capacity peers (Section 3.1).

• There is a point of diminishing returns for high ca-
pacity peers, and BitTyrant can discover it. For clients
with high capacity, the number of peers and their avail-
able bandwidth distribution are significant factors in
determining performance. Our modeling results from
Section 4.1 suggest that the highest capacity peers may
require several hundred available peers to fully max-
imize throughput due to reciprocation. Real world
swarms are rarely this large. In these circumstances,
BitTyrant performance is consistent, allowing peers to
detect and reallocate excess capacity for other uses.

• Low capacity peers can benefit from BitTyrant. Al-
though the most significant performance benefit comes
from intelligently sizing the active set for high capac-
ity peers (see Figure 8), low capacity peers can still im-
prove performance with strategic peer selection, pro-
viding them with an incentive to adopt BitTyrant.

• Fidelity to our specified capacity distribution is con-
sistent across multiple trials. Comparability of exper-
iments is often a concern on PlanetLab, but our re-
sults suggest a minimum download time determined
by the capacity distribution that is consistent across
trials spanning several hours. Further, the consistent
performance of BitTyrant in comparison to unmodi-



fied Azureus suggests that the variability observed is
due to policy and strategy differences and not Planet-
Lab variability.

5.2 Many BitTyrant peers

Given that all users have an individual incentive to be
strategic in current swarms, we next examine the perfor-
mance of BitTyrant when used by all peers in a swarm.
We consider two types of BitTyrant peers: strategic and
selfish. Any peer that uses the BitTyrant unchoking al-
gorithm (Figure 9) is strategic. If such a peer also with-
holds contributing excess capacity that does not improve
performance, we say it is both strategic and selfish. Bit-
Tyrant can operate in either mode. Selfish behavior may
arise when users participate in multiple swarms, as dis-
cussed below, or simply when users want to use their up-
load capacity for services other than BitTorrent.

We first examine performance when all peers are
strategic, i.e., use BitTyrant while still contributing ex-
cess capacity. Our experimental setup included 350
PlanetLab nodes with upload capacities drawn from our
scaled distribution simultaneously joining a swarm dis-
tributing a 5 MB file with combined seed capacity of
128 KB/s. All peers departed immediately upon down-
load completion. Initially, we expected overall perfor-
mance to degrade since high capacity peers would finish
quickly and leave, reducing capacity in the system. Sur-
prisingly, performance improved and altruism increased.
These results are summarized by the CDFs of completion
times comparing BitTyrant and the unmodified Azureus
client in Figure 12. These results are consistent with
our model. In a swarm where the upload capacity distri-
bution has significant skew, high capacity peers require
many connections to maximize reciprocation. BitTyrant
reduces bootstrapping time and results in high capacity
peers having higher utilization earlier, increasing swarm
capacity.

Although BitTyrant can improve performance, such
improvement is due only to more effective use of altruis-
tic contribution. Because BitTyrant can detect the point
of diminishing returns for performance, these contribu-
tions can be withheld or reallocated by selfish clients.
Users may choose to reallocate capacity to services other
than BitTorrent or to other swarms, as most peers par-
ticipate in several swarms simultaneously [7]. While
all popular BitTorrent implementations support down-
loading from multiple swarms simultaneously, few make
any attempt to intelligently allocate bandwidth among
them. Those that do so typically allocate some amount
of a global upload capacity to each swarm individu-
ally, which is then split equally among peers in statically
sized active sets. Existing implementations cannot accu-
rately detect when bandwidth allocated to a given swarm
should be reallocated to another to improve performance.

In contrast, BitTyrant’s unchoking algorithm transitions
naturally from single to multiple swarms. Rather than al-
locate bandwidth among swarms, as existing clients do,
BitTyrant allocates bandwidth among connections, opti-
mizing aggregate download throughput over all connec-
tions for all swarms. This allows high capacity BitTyrant
clients to effectively participate in more swarms simul-
taneously, lowering per-swarm performance for low ca-
pacity peers that cannot.

To model the effect of selfish BitTyrant users, we re-
peated our PlanetLab experiment with the upload capac-
ity of all high capacity peers capped at 100 KB/s, the
point of diminishing returns observed in Figure 11. A
CDF of performance under the capped distribution is
shown in Figure 12. As expected, aggregate performance
decreases. More interesting is the stable rate of diminish-
ing returns BitTyrant identifies. As a result of the skewed
bandwidth distribution, beyond a certain point peers that
contribute significantly more data do not see significantly
faster download rates. If peers reallocate this altruis-
tic contribution, aggregate capacity and average perfor-
mance are reduced, particularly for low capacity peers.
This is reflected in comparing the performance of sin-
gle clients under the scaled distribution (Figure 11) and
single client performance under the scaled distribution
when constrained (Figure 12). The average completion
time for a low capacity peer moves from 314 to 733 sec-
onds. Average completion time for a peer with 100 KB/s
of upload capacity increases from 108 seconds to 190.

While BitTyrant can improve performance for a single
swarm, there are several circumstances for which its use
causes performance to degrade.

• If high capacity peers participate in many swarms or
otherwise limit altruism, total capacity per swarm de-
creases. This reduction in capacity lengthens down-
load times for all users of a single swarm regardless
of contribution. Although high capacity peers will see
an increase in aggregate download rate across many
swarms, low capacity peers that cannot successfully
compete in multiple swarms simultaneously will see a
large reduction in download rates. Still, each individ-
ual peer has an incentive to be strategic as their per-
formance improves relative to that of standard clients,
even when everyone is strategic or selfish.

• New users experience a lengthy bootstrapping period.
To maximize throughput, BitTyrant unchokes peers
that send fast. New users without data are boot-
strapped by the excess capacity of the system only.
Bootstrapping time may be reduced by reintroducing
optimistic unchokes, but it is not clear that selfish
peers have any incentive to do so.

• Peering relationships are not stable. BitTyrant was de-
signed to exploit the significant altruism that exists in



Figure 12: Left: CDFs of completion times for a 350 node PlanetLab experiment. BitTyrant and the original,
unmodified client assume all users contribute all of their capacity. Capped BitTyrant shows performance when high
capacity, selfish peers limit their contribution to the point of diminishing returns for performance. Right: The impact
of selfish BitTyrant caps on performance. Download times at all bandwidth levels increase (cf. Figure 11) and high
capacity peers gain little from increased contribution. Error bars give sample standard deviation over six trials.

BitTorrent swarms today. As such, it continually re-
duces send rates for peers that reciprocate, attempt-
ing to find the minimum rate required. Rather than
attempting to ramp up send rates between high capac-
ity peers, BitTyrant tends to spread available capacity
among many low capacity peers, potentially causing
inefficiency due to TCP effects [16].

To work around this last effect, BitTyrant advertises
itself at connection time using the Peer ID hash. With-
out protocol modification, BitTyrant peers recognize one
another and switch to a block-based TFT strategy that
ramps up send rates until capacity is reached. BitTyrant
clients choke other BitTyrant peers whose block request
rates exceeds their send rates. By gradually increasing
send and request rates to other BitTyrant clients, fairness
is preserved while maximizing reciprocation rate with
fewer connections. In this way, BitTyrant provides a de-
ployment path leading to the conceptually simple strat-
egy of block-based TFT by providing a short-term in-
centive for adoption by all users—even those that stand
to lose from a shift to block-based reciprocation.

We do not claim that BitTyrant is strategyproof, even
when extended with block-based TFT, and leave open for
future work the question of whether further strategizing
can be effective. However, a switch to block-based TFT
among mutually agreeing peers would place a hard limit
on altruism and limit the range of possible strategies.

6 Related work
Modeling and analysis of BitTorrent’s current incentive
mechanism and its effect on performance has seen a
large body of work since Cohen’s [3] seminal paper.
Our effort differs from existing work in two fundamental
ways. First is the conclusion: we refute popular wis-
dom that BitTorrent’s incentive mechanism makes it ro-
bust to strategic peer behavior. Second is the method-
ology: most existing studies consider small or simulated

settings that poorly capture the diversity of deployed Bit-
Torrent clients, strategic peer behavior, peer capacities,
and network conditions. In contrast, we explore BitTor-
rent’s strategy space with our implementation of a strate-
gic client and evaluate it using analytical modeling, ex-
periments under realistic network conditions, and testing
in the wild.

The canonical TFT strategy was first evaluated by Ax-
elrod [1], who showed using a competition that the strat-
egy performs better than other submissions when there
are many repeated games, persistent identities, and no
collusion. Qiu and Srikant [17] specifically study Bit-
Torrent’s rate-based TFT strategy. They show that if
peers strategically limit their upload bandwidth (but split
it equally) while trying to maximize download, then, un-
der some bandwidth distributions, the system converges
to a Nash equilibrium where all peers upload at their ca-
pacity. These results might lead one to believe that Bit-
Torrent’s incentive mechanism is robust as it incentivizes
users to contribute their entire upload capacities. Unfor-
tunately, our work shows that BitTorrent fails to attain
such an equilibrium for typical file sizes in swarms with
realistic bandwidth distributions and churn, which Bit-
Tyrant exploits through strategic peer and rate selection.

Bharambe et al. [2] simulate BitTorrent using a syn-
thetically generated distribution of peer upload capaci-
ties. They show the presence of significant altruism in
BitTorrent and propose two alternate peer selection al-
gorithms based on (i) matching peers with similar band-
width, and (ii) enforcing TFT at the block level, a strat-
egy also proposed by [9]. Fan et al. propose strate-
gies for assigning rates to connections [5], which when
adopted by all members of a swarm would lead to fair-
ness and minimal altruism. The robustness of these
mechanisms to strategic peer behavior is unclear. More
importantly, these proposals appear to lack a convinc-
ing evolution path—a peer adopting these strategies to-



day would severely hurt its download throughput as the
majority of deployed conformant clients will find such a
peer unattractive. In contrast, we demonstrate that Bit-
Tyrant can drastically reduce altruism while improving
performance for a single strategic client today, incenting
its adoption.

Shneidman et al. [19] identify two forms of strategic
manipulation based on Sybil attacks [4] and a third based
on uploading garbage data. Liogkas et al. [12] propose
downloading only from seeds and also identify an ex-
ploit based on uploading garbage data. Locher et al.
investigate similar techniques, i.e., ignoring rate limits
of tracker requests to increase the number of available
peers and connecting to as many peers as possible [13].
However, there exist straightforward fixes to minimize
the impact of such “byzantine” behavior. A third exploit
by Liogkas et al. involves downloading only from the
fastest peers, but the strategy does not take into account
the upload contribution required to induce reciprocation.
In contrast, BitTyrant maximizes download per unit of
upload bandwidth and can drastically reduce its upload
contribution by varying the active set size and not shar-
ing its upload bandwidth uniformly with active peers.

Hales and Patarin [8] argue that BitTorrent’s robust-
ness is not so much due to its TFT mechanism, but more
due to human or sociological factors that cause swarms
with a high concentration of altruistic peers to be pre-
served over selfish ones. They further claim that releas-
ing selfish clients into the wild may therefore not degrade
performance due to the underlying natural selection. Val-
idating this hypothesis requires building and releasing a
strategic and selfish client—one of our contributions.

Massoulie and Vojnovic [15] model BitTorrent as a
“coupon replication” system with a particular focus on
efficiently locating the last few coupons. One of their
conclusions is that altruism is not necessary for BitTor-
rent to be efficient. However, their study does not ac-
count for strategic behavior on the part of peers.

Other studies [2, 7, 11] have pointed out the presence
of significant altruism in BitTorrent or suggest preserv-
ing it [11]. In contrast, we show that the altruism is not
a consequence of BitTorrent’s incentive mechanism and
can in fact be easily circumvented by a strategic client.

7 Conclusion
We have revisited the issue of incentive compatibility
in BitTorrent and arrived at a surprising conclusion: al-
though TFT discourages free riding, the bulk of BitTor-
rent’s performance has little to do with TFT. The dom-
inant performance effect in practice is altruistic contri-
bution on the part of a small minority of high capac-
ity peers. More importantly, this altruism is not a con-
sequence of TFT; selfish peers—even those with mod-
est resources—can significantly reduce their contribution

and yet improve their download performance. BitTorrent
works well today simply because most people use client
software as-is without trying to cheat the system.

Although we have shown that selfishness can hurt
swarm performance, whether or not it will do so in prac-
tice remains unclear. The public release of BitTyrant
provides a test. Perhaps users will continue to donate
their excess bandwidth, even after ensuring the maxi-
mum yield for that bandwidth. Perhaps users will be-
have selfishly, causing a shift to a completely different
design with centrally enforced incentives. Perhaps strate-
gic behavior will induce low bandwidth users to invest
in higher bandwidth connections to compensate for their
worse performance, yielding better overall swarm perfor-
mance in the long run. Time will tell. These uncertainties
leave us with the still open question: do incentives build
robustness in BitTorrent?

The BitTyrant source code and distribution are pub-
licly available at:

http://BitTyrant.cs.washington.edu/

Acknowledgments
We thank our shepherd, Jinyang Li, and the anonymous
reviewers for their comments. This work was supported
by NSF CNS-0519696 and the ARCS Foundation.

References
[1] R. Axelrod. The Evolution of Cooperation. Basic Books,

1985.
[2] A. Bharambe, C. Herley, and V. Padmanabhan. Analyz-

ing and Improving a BitTorrent Network’s Performance
Mechanisms. In Proc. of INFOCOM, 2006.

[3] B. Cohen. Incentives build robustness in BitTorrent. In
Proc. of IPTPS, 2003.

[4] J. R. Douceur. The Sybil attack. In Proc. of IPTPS, 2002.
[5] B. Fan, D.-M. Chiu, and J. Liu. The Delicate Tradeoffs in

BitTorrent-like File Sharing Protocol Design. In Proc. of
ICNP, 2006.

[6] GNU Scientific Library. http://www.gnu.org/
software/gsl/.

[7] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang.
Measurements, analysis, and modeling of BitTorrent-like
systems. In Proc. of IMC, 2005.

[8] D. Hales and S. Patarin. How to Cheat BitTorrent and
Why Nobody Does. Technical Report UBLCS 2005-12,
Computer Science, University of Bologna, 2005.

[9] S. Jun and M. Ahamad. Incentives in BitTorrent induce
free riding. In Proc. of P2PECON, 2005.

[10] S. Katti, D. Katabi, C. Blake, E. Kohler, and J. Strauss.
MultiQ: Automated detection of multiple bottleneck ca-
pacities along a path. In Proc. of IMC, 2004.

[11] A. Legout, G. Urvoy-Keller, and P. Michiardi. Rarest
First and Choke Algorithms are Enough. In Proc. of IMC,
2006.

[12] N. Liogkas, R. Nelson, E. Kohler, and L. Zhang. Exploit-
ing BitTorrent for fun (but not profit). In Proc. of IPTPS,
2006.

http://BitTyrant.cs.washington.edu/
http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/


Label Definition Meaning
ω 2 Number of simultaneous optimistic unchokes per peer
λ 80 Local neighborhood size (directly connected peers)
b(r) Figure 1 Probability of upload capacity rate r
B(r)

∫ r

0
b(r)dr Cumulative probability of a upload capacity rate r

active(r) b
√

0.6rc − ω Size (in peers) of the active transfer set for upload capacity rate r
split(r) r

active(r)+ω Per-connection upload capacity for upload capacity rate r

s(r) Figure 1 Probability of an equal split rate r using mainline active(r) sizing
S(r)

∫ r

0
s(r)dr Cumulative probability of an equal-split rate r

Table 2: Functions used in our model and their default settings in the official BitTorrent client.

[13] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer. Free
Riding in BitTorrent is Cheap. In Proc. of HotNets, 2006.

[14] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. An-
derson, A. Krishnamurthy, and A. Venkataramani. iPlane:
An information plane for distributed services. In Proc. of
OSDI, 2006.

[15] L. Massoulié; and M. Vojnović. Coupon replication sys-
tems. SIGMETRICS Perform. Eval. Rev., 33(1):2–13,
2005.

[16] R. Morris. TCP behavior with many flows. In Proc. of
ICNP, 1997.

[17] D. Qiu and R. Srikant. Modeling and performance anal-
ysis of BitTorrent-like peer-to-peer networks. In Proc. of
SIGCOMM, 2004.

[18] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measure-
ment study of peer-to-peer file sharing systems. In Proc.
of Multimedia Computing and Networking, 2002.

[19] J. Shneidman, D. Parkes, and L. Massoulié. Faithfulness
in internet algorithms. In Proc. of PINS, 2004.

A Modeling notes
All numerical evaluation was performed with the GSL
numerics package [6]. Refer to Section 3 for assump-
tions and Table 2 for definitions.

Upload / download: Probability of reciprocation for a
peer P with upload capacity rP from Q with rQ:

p recip(rP , rQ) = 1− (1− S(rP ))active(rQ) (1)

Expected reciprocation probability for capacity r:

recip(r) =
∫

b(x)p recip(r, x)dx (2)

Expected download and upload rate for capacity r:

D(r) = active(r)
[∫

b(x)p recip(r, x)split(x)dx

]
+

ω

[∫
b(x)split(x)dx

]
(3)

U(r) = min
(
r, (active(r) + ω) D(r)

)
(4)

Altruism: Altruism when defined as the difference be-
tween upload contribution and download reward

altruism gap(r) = max
(
0, U(r)−D(r)

)
(5)

Altruism per connection when defined as upload contri-
bution not resulting in direct reciprocation.

altruism conn(r) =∫ (
b(x)

(
(1− p recip(r, x))split(r)+ (6)

p recip(r, x) max(0, split(r)− split(x))
))

dx

Total altruism not resulting in direct reciprocation.

altruism(r) = (active(r) + ω)altruism conn(r) (7)

Convergence: Probability of a peer with rate r discover-
ing matched TFT peer in n iterations:

c(r, n) = 1− S(r)n 2ω (8)

Time to populate active set with matched peers given up-
load capacity r. Note, s = split(r), and T = 30s is the
period after which optimistic unchokes are switched.

convergence time(r) = (9)

T · active(r)
(
c(s, 1)+

∞∑
n=2

n c(s, n)
n−1∏
i=1

(1− c(s, i))
)

Unchoke probability: The distribution of number of op-
timistic unchokes is binomial with success probability ω

λ .
Because overhead is low, λ � active(r) in BitTyrant, we
approximate λ − active(r) by λ. The expected number
of optimistic unchokes per round is ω.

Pr[unchokes = x] =
(

λ

x

) (ω

λ

)x (
1− ω

λ

)(λ−x)

(10)

∴ E[unchokes] = λ
ω

λ
= ω


	Introduction
	BitTorrent overview
	Protocol
	Measurement

	Modeling altruism in BitTorrent
	Tit-for-tat matching time
	Probability of reciprocation
	Expected download rate
	Expected upload rate
	Modeling altruism
	Validation

	Building BitTyrant: A strategic client
	Maximizing reciprocation
	Sizing the local neighborhood
	Additional cheating strategies

	Evaluation
	Single strategic peer
	Many BitTyrant peers

	Related work
	Conclusion
	Modeling notes

