
Chain Replication for Supporting
High Throughput and Availability

Fred B. Schneider
fbs@cs.cornell.edu

Robbert van Renesse
rvr@cs.cornell.edu

USENIX Association OSDI ’04: 6th Symposium on Operating Systems Design and Implementation

Abstract
“Chain replication is a new approach to coordinating
clusters of fail-stop storage servers. The approach is
intended for supporting large-scale storage services that
exhibit high throughput and availability without sacrificing
strong consistency guarantees.”

Abstract

● A Storage Service Interface
● Chain Replication
● Comparison to Primary/Backup
● Simulation Experiments
● Concluding Remarks

A Storage Service
Interface

A Storage Service Interface

● persistent map from objId to value
● query(objId) -> value

○ retrieve current value of objId
● update(objId, newVal) -> value

○ update value of objId
○ value := f(oldVal, newVal)
○ not necessarily just PUT (ie CAS, ...)
○ but no cross-object transactions

A Storage Service Interface

State:
● Hist[objId]

○ History of all updates to objId
○ query(objId) = f(Hist[objId])

● Pending[objId]
○ Set of pending requests for objId

A Storage Service Interface

Transitions:
● T1: Client request ‘r’ arrives

○ Pending[objId] += r
● T2: Client request ‘r’ ignored

○ Pending[objId] -= r
● T3: Client request processed

○ Pending[objId] -= r
○ if (update) Hist[objId] += r

A Storage Service Interface

Desirable Properties:
● High Availability
● High Throughput
● Strong Consistency

○ Operations are linearizable
○ Read-your-own-writes

Chain Replication

Chain Replication

Assumptions:
● Servers are fail-stop

○ More or less reasonable
○ (minus bugs, attackers, magnets, etc)

● Failures can be detected
○ Trickier than it sounds

Chain Replication

Chain Replication

Node State:
● Hist[i] = list of updates processed by node ‘i’
● Sent[i] = updates seen by ‘i’ but not ACKed
System state:
● Pending = requests seen by any node but

not yet processed by TAIL
● Hist = Hist[TAIL]

Chain Replication

Invariants:
● Hist[i] >= Hist[i+1]

○ (Update Invariant)
● Hist[i] = Hist[i+1] + Sent[i]

○ (In-process Requests Invariant)

Chain Replication

The Happy Case
● HEAD/TAIL receive a request

○ Added to Pending (T1)
● Query processed by TAIL

○ Removed from Pending (T3a)
● Update processed by TAIL

○ Removed from Pending, added to Hist (T3b)

Chain Replication

Dealing with Failure
● “Single” master

○ AKA Zookeeper
● Detects failed nodes
● Reconfigures the chain
● Points clients to HEAD and TAIL

Chain Replication - Failure of HEAD

H H+

updates

[1,2,3,4,5] [1,2,3] [1,2]

Chain Replication - Failure of HEAD

H H+

updates

[1,2,3,4,5] [1,2,3] [1,2]

Master detects that H is dead, removes it from the chain

Chain Replication - Failure of HEAD

H H+

updates

[1,2,3] [1,2]

4 and 5 are lost - this is just (T2)

Chain Replication - Failure of TAIL

T-

[1,2,3,4,5]
[3,4,5]

[1,2,3]
[3]

[1,2]

T

queries replies

Chain Replication - Failure of TAIL

T-

[1,2,3,4,5]
[3,4,5]

[1,2,3]
[3]

[1,2]

T

queries replies

Master detects that T is dead, removes it from the chain

Chain Replication - Failure of TAIL

T-

[1,2,3,4,5]
[3,4,5]

[1,2,3] [1,2]

T

replies

3 has now been processed by a tail - this is just (T3b)

[3]

Chain Replication - Failure of TAIL

T-

[1,2,3,4,5]
[4,5]

[1,2,3] [1,2]

T

repliesqueries

Queries now go to T-

Chain Replication - Failure of Interior

S

[1,2,3,4,5]
[3,4,5]

[1,2,3,4]
[3,4]

[1,2,3]

S+S-

Chain Replication - Failure of Interior

S

[1,2,3,4,5]
[3,4,5]

[1,2,3,4]
[3,4]

[1,2,3]

S+S-

Master detects that S is dead

Chain Replication - Failure of Interior

[1,2,3,4,5]
[3,4,5]

[1,2,3]

S+S-

Master asks S+ for its largest seqId, tells it to S-

{3}

Chain Replication - Failure of Interior

[1,2,3,4,5]
[4,5]

[1,2,3]

S+S-

[4,5]

S- forwards missing updates to S+

Chain Replication - Failure of Interior

[1,2,3,4,5]
[4,5]

[1,2,3,4,5]
[4,5]

S+S-

Then continues forwarding additional updates in order

Chain Replication - Extending

[1,2,3,4,5]
[4,5]

[1,2,3]

T

queries replies

Chain Replication - Extending

[1,2,3,4,5]
[4,5]

[1,2,3]

T

queries replies

T+

[]

New node added at T+, state initially empty

Chain Replication - Extending

[1,2,3,4,5]
[4,5]

[1,2,3]

T

queries

T+

[]

[1,2,3]

replies

T forwards Hist to T+, starts tracking Sent[T]

Chain Replication - Extending

[1,2,3,4,5]
[4,5]

[1,2,3,4]
[4]

T

queries

T+

[1,2,3]

replies

Once done, In-process Updates Invariant holds

Chain Replication - Extending

[1,2,3,4,5]
[4,5]

[1,2,3,4]
[4]

T T+

[1,2,3]

T stops acting as tail, forwards Sent[T] to T+

[4]

queries replies

Chain Replication - Extending

[1,2,3,4,5]
[5]

[1,2,3,4]

T T+

[1,2,3,4]

Once T+ has all of Hist, it’s the new TAIL

queries replies

Comparison to
Primary/Backup

Comparison to Primary/Backup

Primary/Backup:

P

B

B

...

Comparison to Primary/Backup

● CR splits P’s work between HEAD and TAIL
○ HEAD sequences/applies updates
○ TAIL interleaves queries
○ -> better overall throughput

● CR distributes updates serially
○ -> better throughput
○ -> higher latency

Comparison to Primary/Backup

Failure Recovery: CR
● Head failure

○ Updates unavailable for 2x message time
● Middle failure

○ Updates delayed for 4x message time
● Tail failure

○ Query unavailable for 2x message time
○ (updates delayed in the meantime)

Comparison to Primary/Backup

Failure Recovery: P/B
● Primary failure

○ Everything down for 5x message time
● Backup failure

○ Updates down for 1x message time
○ Queries for ‘dirty’ rows down 1x message time
○ Queries for ‘clean’ rows unaffected

Simulation Experiments

Simulation Experiments

● Infinite bandwidth
● Message latency = 1ms
● Query latency = 5ms
● Update latency = 50ms
● Applying a pre-calculated update = 20ms
● 25 clients, 1 concurrent request per client

Simulation Experiments

Single chain, no failures: better throughput than P/B

Simulation Experiments

Multiple chains:
● Each chain manages a subset of objects
● Consistent hashing from objId to chain
● Servers may participate in multiple chains
● 5000 chains, each with 3 servers
● Same 25-client load, randomly distributed

Simulation Experiments

Multiple chains: horizontal scalability

Simulation Experiments

Effects of failures:
● 24 servers
● 5000 chains (length 3)
● 150 GB/server
● 6.25 MB/s max bandwidth for recovery
● 10 minutes to reboot failed server

Simulation Experiments

Throughput with failures (at 00:30)

Concluding Remarks

Concluding Remarks

● CR supports strong consistency
● CR has better throughput than P/B

○ Sharing load between head and tail
○ More even bandwidth distribution

● CR has better availability than P/B
○ Mainly via faster recovery
○ Not partition tolerant though

● (worse latencies though)

Concluding Remarks

Subsequent work:
● Object Storage on CRAQ

○ Read from middle nodes to scale out
○ ‘Dirty’ reads require a check with the tail

● ChainReaction
○ Add additional nodes after the tail to scale out reads
○ Reads from post-tail are eventually consistent

Questions?

