Chain Replication for Supporting
High Throughput and Availability

Robbert van Renesse Fred B. Schneider
rvr@cs.cornell.edu fos@cs.cornell.edu

USENIX Association OSDI ’04: 6th Symposium on Operating Systems Design and Implementation

Abstract

“Chain replication is a new approach to coordinating
clusters of fail-stop storage servers. The approach is
Intended for supporting large-scale storage services that
exhibit high throughput and availability without sacrificing
strong consistency guarantees.”

Abstract

A Storage Service Interface
Chain Replication

Comparison to Primary/Backup
Simulation Experiments
Concluding Remarks

A Storage Service
Interface

A Storage Service Interface

e persistent map from objld to value
e query(objld) -> value

O

retrieve current value of obijld

e update(objld, newVal) -> value

O

O
O
O

update value of objld

value := f(oldVal, newVal)

not necessarily just PUT (ie CAS, ...)
but no cross-object transactions

A Storage Service Interface

State:

e Hist[objld]
o History of all updates to objld
o query(objld) = f(Hist[objld])

e Pending|objld]

o Set of pending requests for objld

A Storage Service Interface

Transitions:

e T1: Client request ‘r" arrives
o Pending[objld] +=r

e T2: Client request ‘r’ ignored
o Pending[objld] -=r

e [3: Client request processed
o Pending[objld] -=
o if (update) Hist[objld] +=r

A Storage Service Interface

Desirable Properties:

e High Availability
e High Throughput

e Strong Consistency

o Operations are linearizable
o Read-your-own-writes

Chain Replication

Chain Replication

Assumptions:

e Servers are fail-stop

o More or less reasonable
o (minus bugs, attackers, magnets, etc)

e F[ailures can be detected
o Trickier than it sounds

Chain Replication

updates guernes replies

.'\u -.-

% i

o it —— g
X - r .",. -

HEAD ——={ }-- - F—={ TAIL |

S| ===

. e
—ia | [_
H'-_ _-'-. H'-_ _-'l- o

Figure 2: A chain.

Chain Replication

Node State:

e Hist[i] = list of updates processed by node I’
e Sent[i] = updates seen by ‘i’ but not ACKed

System state:

e Pending = requests seen by any node but
not yet processed by TAIL
e Hist = Hist[TAIL]

Chain Replication

Invariants:
e Hist[i] >= Hist[i+1]

o (Update Invariant)
e Hist[i] = Hist[i+1] + Sent]i]

o (In-process Requests Invariant)

Chain Replication

The Happy Case

e HEAD/TAIL receive a request
o Added to Pending (T1)

e Query processed by TAIL

o Removed from Pending (T3a)

e Update processed by TAIL
o Removed from Pending, added to Hist (T3b)

Chain Replication

Dealing with Failure

e "Single” master
o AKA Zookeeper
e Detects failed nodes

e Reconfigures the chain
e Points clients to HEAD and TAIL

Chain Replication - Failure of HEAD

[1,2,3,4,5] [1,2,3] [1,2]

Chain Replication - Failure of HEAD

updates

o

[1,2,3,4,5] [1,2,3] [1,2]

Master detects that H is dead, removes it from the chain

Chain Replication - Failure of HEAD

s oo

[1,2,3] [1,2]

4 and 5 are lost - this is just (T2)

Chain Replication - Failure of TAIL

queries replies

o—@

[1,2,3,4,5] [1,2,3] [1,2]
[3,4,5] [3]

Chain Replication - Failure of TAIL

queries replies

G @
[1,2,3,4,5] [1,2,3] [1,2]
[3,4,5] [3]

Master detects that T is dead, removes it from the chain

Chain Replication - Failure of TAIL

o ¢ =

[1,2,3,4,5] [1,2,3] [1,2]
[3,4,5]

3 has now been processed by a tail - this is just (T3b)

Chain Replication - Failure of TAIL

[1,2,3,4,5] [1,2,3] [1,2]
[4.9]

Queries now go to T-

Chain Replication - Failure of Interior

O

[1,2,3,4,5] [1,2,3,4] [1,2,3]
[3,4,5] [3,4]

Chain Replication - Failure of Interior

O RO

[1,2,3,4,5] [1,2,3,4] [1,2,3]
[3,4,5] [3,4]

Master detects that S is dead

Chain Replication - Failure of Interior

[15,2,2],5] [1,2,3]

Master asks S+ for its largest seqld, tells it to S-

Chain Replication - Failure of Interior

[1,2,3,4,5] [1,2,3]
[4.9]

S- forwards missing updates to S+

Chain Replication - Failure of Interior

“ o

[1,2,3,4,5] [1,2,3,4,5]
[4,5] [4,5]

Then continues forwarding additional updates in order

Chain Replication - Extending

queries replies

O

[1,2,3,4,5] [1,2,3]
[4,9]

Chain Replication - Extending

queries replies

O o

[1,2,3,4,5] [1,2,3]
[4.9]

New node added at T+, state initially empty

Chain Replication - Extending

queries replies

.@ ______ - ,@

[1,2,3,4,5] [1,2,3] I
[4.9]

T forwards Hist to T+, starts tracking Sent[T]

Chain Replication - Extending

queries replies

[1,2,3,4,5] [1,2,3,4] [1,2,3]
[4.9] [4]

Once done, In-process Updates Invariant holds

Chain Replication - Extending

[1,2,3,4,5] [1,2,3,4] [1,2,3]
[4.9] [4]

T stops acting as tail, forwards Sent[T] to T+

Chain Replication - Extending

queries \ replies
G @

[1,2,3,4,5] [1,2,3,4] [1,2,3,4]
[5]

Once T+ has all of Hist, it's the new TAIL

Comparison to
Primary/Backup

Comparison to Primary/Backup

Primary/Backup:

Comparison to Primary/Backup

e CR splits P's work between HEAD and TAIL

o HEAD sequences/applies updates
o TAIL interleaves queries
o -> better overall throughput

e CR distributes updates serially
o -> better throughput
o -> higher latency

Comparison to Primary/Backup

Failure Recovery: CR

e Head failure

o Updates unavailable for 2x message time
e Middle failure

o Updates delayed for 4x message time
e Tall failure

o Query unavailable for 2x message time
o (updates delayed in the meantime)

Comparison to Primary/Backup

Failure Recovery: P/B

e Primary failure
o Everything down for 5x message time

e Backup failure

o Updates down for 1x message time
o Queries for ‘dirty’ rows down 1x message time
o Queries for ‘clean’ rows unaffected

Simulation Experiments

Simulation Experiments

Infinite bandwidth

Message latency = 1ms

Query latency = 5ms

Update latency = 50ms

Applying a pre-calculated update = 20ms
25 clients, 1 concurrent request per client

Simulation Experiments

total throughput

EDD : | 1 T T I
weak 73
500 Chg}g |
400 |
300 _
200 % % |
® g %y

100 F e,]
e =i L S

oy I I R |

0 5101520253035404550
percentage updates

{a) t =2

total throughput

600

500

400

300

200

100

I I I I
weak ——
chain

= L

X o
B ;

f't***“*
I] 1 1 1 1 1 1 1

0 5 1015202530 35 40 45 50
percentage updates

(b) t =3

total throughput

600

500

400

300

200

100

| !
weak -
chain

" £ o
.

T
¥

-
-
5 ""!'391*-‘

0
0 5 1015202530 35 40 45 50

percentage updates

{¢) £=10

Single chain, no failures: better throughput than P/B

Simulation Experiments

Multiple chains:

e Each chain manages a subset of objects
Consistent hashing from objld to chain
Servers may participate in multiple chains
9000 chains, each with 3 servers

®
®
®
e Same 25-client load, randomly distributed

Simulation Experiments

120 T ——— T T
A= gueries only —
5% -
B ¥ 10% #
100 / 25% a
: 50% - -m-
5 / updat by ---& -
5 sl 3 pdates only
o |
o - “ %
< '
3 |
E BG o l- s
g-_‘ | b -
2 4dH L,
= . 3
I_, » =
20 _—:.g___l S s ;
i ! o D) - -
0 i. ! 1 L 1 1 1 I
0 20 40 60 80 100 120 140

#servers

Multiple chains: horizontal scalability

Simulation Experiments

Effects of failures:

24 servers

5000 chains (length 3)

150 GB/server

6.25 MB/s max bandwidth for recovery
10 minutes to reboot failed server

Simulation Experiments

query thruput

upd. thruput

110 ——

105

100 ||

95

90 :

11

10

" | " L "
01:00 01:30

02:00

00:30

01:00 01:30
time
(a) one failure

02:00

query thruput

upd. thruput

110 T T T
105 L]
100 |]
95 | .
go " 1 L L 1 L " 1 i L
00:30 01:00 01:30 02:00
time
11 T T T
10 B T
00:30 01:00 01:30 02:00
time

(b) two failures

Throughput with failures (at 00:30)

Concluding Remarks

Concluding Remarks

e CR supports strong consistency
e CR has better throughput than P/B

o Sharing load between head and tail
o More even bandwidth distribution

e CR has better availability than P/B

o Mainly via faster recovery
o Not partition tolerant though

e (worse latencies though)

Concluding Remarks

Subsequent work:
e Object Storage on CRAQ

o Read from middle nodes to scale out
o ‘Dirty’ reads require a check with the tail
e ChainReaction

o Add additional nodes after the tail to scale out reads
o Reads from post-tail are eventually consistent

Questions?

