
Operating Systems 50

13 Deadlock

Deadlock is one area where there is a strong theory, but much of it is not relevant
in practice. Reason: many solutions are expensive and/or require predicting the
future.

Deadlock example: semaphores. Two threads: one does P(x) followed by P(y),
the other does the reverse.

Deadlock: a situation where each of a collection of threads is waiting for
something from other threads in the collection. Since all are waiting, none can
provide any of the things being waited for.

These are relatively simple-minded cases. Things may be much more complicated:

• In general, don’t know in advance how many resources a thread will need. If
only we could predict the future....

• Deadlock can occur over separate resources, as in semaphore example, or
over pieces of a single resource, as in memory, or even over totally separate
classes of resources (e.g., printers and memory). Deadlock can occur over
anything involving waiting, for example messages in a pipe system. Hard for
OS to control.

In general, there are four conditions for deadlock:

• Mutually exclusive access: resources cannot be shared.

• No preemption. Once given, a resource cannot be taken away.

• Hold and wait: threads can hold resources while they are waiting for more
resources.

• There is a circularity in the graph of who has what and who wants what.
This graph shows threads as circles, resources as squares, arrows from thread
to resource waited for, from resource to owning thread.

Solutions to the deadlock problem fall into two general categories:

Operating Systems 51

• Detection : determine when the system is deadlocked and then take drastic
action. Requires termination of one or more threads in order to release their
resources. Impractical unless the system has special support for aborting
threads and recovering (e.g., transactions).

• Prevention : organize the system so that it is impossible for deadlock ever to
occur. May lead to less efficient resource utilization in order to guarantee no
deadlocks.

Deadlock prevention: must find a way to eliminate one of the four necessary
conditions for deadlock:

• Don’t allow exclusive access. This is not reasonable for many applications.

• Create enough resources so that there’s always plenty for all.

• Don’t allow waiting. (If I can’t get all the resources I need, give up all.) Not
practical in many situations.

• Allow preemption. E.g. pre-empt students’ thesis disk space?

• Make thread ask for everything at once. Either get them all or wait for them
all. Tricky to implement: must be able to wait on many things without
locking anything. Painful for programmer: may be difficult to predict future
needs, so must make very wasteful use of resources.

• Banker’s algorithm.

1. state maximum resource needs in advance

2. allocate resources when needed; delay when granting request could lead
to deadlock

int Available[j]: Available resources of type j

int Max[i,j]: Maximal #resources of type j needed by thread i

int Allocation[i,j]: #resources of type j allocated to thread i

// request a resource

bool request(Thread i, Resource j, Num k) {

if (Allocation[i,j] + k > Max[i,j] || Available[j] < k)

Operating Systems 52

return false;

Available[j] -= k;

Allocation[i,j] += k;

// check if granting the resources is safe

if (safe(j)) return TRUE;

// unsafe, deny request

Available[j] += k;

Allocation[i,j] -= k;

return FALSE;

}

// check if we’re in a safe state (Banker’s algorithm)

bool safe(Resource j) {

int Work = Available[i,j];

bool Finish[num_threads] = {FALSE, ..., FALSE};

// seeks to find a sequence of threads that can execute even if

// they ask for their maximal resources, thus ensuring progress

while (1) {

for (i=0; i<num_threads; i++) {

if (!Finish[i] && Max[i,j] - Allocation[i,j] <= Work) {

// thread can execute

// add the resources it will eventually release

Work += Allocation[i,j];

Finish[i] = TRUE;

break;

}

}

break;

}

if (Finish != {TRUE, ..., TRUE}) return FALSE;

// all threads will be able to finish

return TRUE;

}

Operating Systems 53

Banker’s algorithm provides interesting insight into dynamic deadlock
prevention, but has little practical relevance (runtime cost, difficulty of
predicting number of threads and their maximal resource needs).

• Require ordered requests. E.g. ask for resource of type S, then resources of
type T, etc. If all threads allocate resource types in same order, there can be
no cyclic dependencies. Widely used in practice.

1. Resources that are never held by a thread at the same time can be
requested in any order relative to each other.

2. Finding a feasible ordering of resources requires design time knowledge
of the needs of all threads.

In general, deadlock prevention is difficult, expensive or inefficient. Detection is
also expensive and recovery requires special system support (thread may be in
arbitrary state).

