
Operating Systems 15

4 Threads vs. Processes

A process includes

• an address space (defining all the code and data pages)

• a resource container (OS resource and accounting information)

• a “thread of control”, which defines where the process is currently executing
(basically, the PC, registers, and stack)

Communication between cooperating processes is relatively costly, because they
don’t share memory. Must communicate through

• shared files

• communication channels

That’s fine for processes that interact at a “coarse grain” (e.g., “ps -aux | fgrep

emacs | more”), but may be too costly/awkward for processes that have more
complex interactions.

Idea: allow (mutually consenting) processes to share part or all of their memory.

Processes can now interact efficiently (through shared memory), but each still has
its own address space, set of OS resources, and accounting information. All
modern operating systems support this in some way.

Sometimes, closely cooperating processes (e.g., processes inside the OS kernel)

share all of their memory, and use the same OS resources. In this case, there
would be a lot of duplication and unnecessary overhead if conventional processes

were used.

• creating a process is relatively costly, because of all the structures that must

be allocated and initialized.

• context switching is more complex than necessary, since there is no real need

for separate address spaces.

What’s similar in these processes?



Operating Systems 16

• they share the same code and data (address space)

• they use the same resources (files, communication channels)

What don’t they share?

• each has its own PC, registers, stack pointer

Idea: separate the concepts of a “thread of control” (PC, SP, registers) from the
rest of the process (address space, resources, accounting, etc.) Many modern

operating systems therefore support two entities:

• the task (process, actor, heavyweight process), which defines an address

space, a resource container, accounting information

• the thread (lightweight process) which defines a single sequential execution

stream within a process

There may be several threads executing in a single address space. Threads are the
unit of scheduling; tasks are containers in which threads execute.

In this refined model, a conventional process consists of a task with a single

thread of control.

Programming with threads is very flexible, but error-prone. There is no
protection between threads. In C/C++

• automatic variables are private to each thread

• global variables and dynamically allocated memory (malloc) are shared

among threads.



Operating Systems 17

5 Synchronization: The Too-Much-Milk Problem

Synchronization: using atomic operations to ensure correct operation of
cooperating processes.

The “too much milk” problem:
Person A Person B

3:00 Look in fridge. Out of milk.
3:05 Leave for store.

3:10 Arrive at store. Look in fridge. Out of milk.
3:15 Leave store. Leave for store.

3:20 Arrive home, put milk away. Arrive at store.
3:25 Leave store.
3:30 Arrive home. OH, NO!

What does correct mean? Somebody gets milk, but we don’t get too much milk.

One of the most important things in synchronization is to figure out what you
want to achieve.

Mutual exclusion: Mechanisms that ensure that only one person or process is
doing certain things at one time (others are excluded). E.g. only one person goes

shopping at a time.

Critical section: A section of code, or collection of operations, in which only one
process may be executing at a given time. E.g. shopping. It’s a large operation

that we want to make “sort of” atomic.

There are many ways to achieve mutual exclusion. Most involve some sort of
locking mechanism: prevent someone from doing something. Primitives: lock(l)

and unlock(l) delimit critical section. For the fridge analogy: before shopping,
leave a note on the refrigerator.

Three elements of locking:
1. Must lock before using. leave note

2. Must unlock when done. remove note
3. Must wait if locked. don’t shop if note



Operating Systems 18

1st attempt at computerized milk buying:

Processes A & B

1 if (NoMilk) {
2 if (NoNote) {
3 Leave Note;

4 Buy Milk;
5 Remove Note;

6 }
7 }

• This doesn’t always work: A1 A2 B1 B2 B3 B4 B5 B6 ...

• This solution works for people because lines 1-3 are performed atomically:
you’ll see the other person at the refrigerator and make arrangements.

Typically, computers don’t both test (look for other person) and set (leave
note) at the same time.

• In this case, we haven’t eliminated the problem; we’ve just moved it and
made it a little less likely (i.e. a little more insidious). This is typical of first

attempts at solutions to synchronization problems.

What happens if we leave the note at the very beginning: does this make
everything work?

2nd attempt: change meaning of note. A buys if there’s no note, B buys if there

is a note. This gets rid of confusion.

Process A
1 if (NoNote) {

2 if (NoMilk) {
3 Buy Milk;

4 }
5 Leave Note;

6 }



Operating Systems 19

Process B

1 if (Note) {
2 if (NoMilk) {

3 Buy Milk;
4 }
5 Remove Note;

6 }

• Does this work?

• How can you tell?

• Ideally, we shouldn’t rely on intuitions or informal reasoning when dealing

with complex parallel programs: we should be able to prove that they behave
correctly. Unfortunately, formal verification has only been successful on very

small programs (too hard to do). For example, in the above example:

– A note will be left only by A, and only if there isn’t already a note.

– A note will be removed only by B, and only if there is a note.

– Thus, there is either one note, or no note.

– If there is a note, only B will buy milk.

– If there is not a note, only A will buy milk.

– Thus, only one process will buy milk.

• Suppose B goes on vacation. A will buy milk once and won’t buy any more
until B returns. Thus this really doesn’t really do what we want; it’s unfair,
and leads to starvation.

• In other words, can’t distinguish “You’re buying” from “I’m not buying.”

Not enough information.

3rd attempt: use 2 notes.

Process A
1 Leave NoteA;



Operating Systems 20

2 if (NoNoteB) {

3 if (NoMilk) {
4 Buy Milk;

5 }
6 }
7 Remove NoteA;

Process B is the same except interchange NoteA and NoteB.

What can you say about this solution? (Look at the boundary between

statements 1 and 2)

• At most one process will buy milk: each process leaves note before it checks.

• If one process goes on vacation after step 7, the other process will still buy

milk.

• Suppose both A and B leave notes at exactly the same time: nobody will

buy milk (there is still starvation).

Solution is almost correct. We just need a way to decide who will buy milk when

both leave notes (somebody has to hang around to make sure that the job gets
done).

4th attempt: in case of tie, B will buy milk. Process A stays the same as before.

Process B
1 Leave NoteB;

2 while (NoteA) DoNothing;
3 if (NoMilk) {

4 Buy Milk;
5 }
6 Remove NoteB;

This solution works. But it still has two disadvantages:

• Asymmetric (and complex) code.

• While B is waiting it is consuming resources (busy-waiting).



Operating Systems 21

6 Synchronization with Semaphores

The too-much-milk solution is much too complicated. The problem is that the
mutual exclusion mechanism was too simple-minded: it used only atomic reads

and writes. This is sufficient, but unpleasant. It would be unbearable to extend
that mechanism to many processes. Let’s look at more powerful, higher-level
mechanisms.

Requirements for a mutual exclusion mechanism:

• Must allow only one process into a critical section at a time.

• If several requests at once, must allow one process to proceed.

• Processes must be able to go on vacation outside critical section.

Desirable properties for a mutual exclusion mechanism:

• Fair: if several processes waiting, let each in eventually.

• Efficient: don’t use up substantial amounts of resources when waiting. E.g.

no busy waiting.

• Simple: should be easy to use (e.g. just bracket the critical sections).

Desirable properties of processes using the mechanism:

• Always lock before manipulating shared data.

• Always unlock after manipulating shared data.

• Do not lock again if already locked.

• Do not unlock if not locked by you (usually: there are a few exceptions to
this).

• Do not spend large amounts of time in critical section.

Semaphore: A synchronization variable that takes on positive integer values.

Invented by Edsger Dijkstra in the mid 60’s.



Operating Systems 22

• P(semaphore): an atomic operation that waits for semaphore to become

greater than zero, then decrements it by 1 (“proberen” in Dutch).

• V(semaphore): an atomic operation that increments semaphore by 1

(“verhogen” in Dutch).

Semaphores are simple and elegant and allow the solution of many interesting
problems. They do a lot more than just mutual exclusion.

Too much milk problem with semaphores:

Processes A & B

1 P(OKToBuyMilk);
2 if (NoMilk) {

3 Buy Milk;
4 }
7 V(OKToBuyMilk);

Note: OKToBuyMilk must initially be set to 1. What happens if it isn’t?

Show why there can never be more than one process buying milk at once.

Binary semaphores are those that can only take on two values, 0 and 1.

Semaphores aren’t provided by hardware. (I’ll describe implementation later.)

But they have several attractive properties:

• Machine independent.

• Simple.

• Work with many processes.

• Can have many different critical sections with different semaphores.

• Can acquire many resources simultaneously (multiple P’s).



Operating Systems 23

• Can permit multiple processes into the critical section at once, if that is

desirable.

Desirability of layering: picking powerful and flexible intermediate solutions to

problems. A synchronization kernel is appropriate for one layer.

Semaphores are used in two different ways:

• Mutual exclusion : to ensure that only one process is accessing shared
information at a time. If there are separate groups of data that can be

accessed independently, there may be separate semaphores, one for each
group of data. These semaphores are always binary semaphores.

• Condition synchronization : to permit processes to wait for certain things to
happen. If there are different groups of processes waiting for different things

to happen, there will usually be a different semaphore for each group of
processes. These semaphores aren’t necessarily binary semaphores.

Semaphore Example: Producer & Consumer. Suppose one process is creating

information that is going to be used by another process, e.g. suppose one process
is reading information from the disk, and another process will compile that

information from soure code to binary. Processes shouldn’t have to operate in
perfect lock-step: producer should be able to get ahead of consumer.

• Producer: creates copies of a resource.

• Consumer: uses up (destroys) copies of a resource. (may produce something
else)

• Buffers: used to hold information after producer has created it but before
consumer has used it.

• Synchronization: keeping producer and consumer in step.

• Define constraints (definition of what is “correct”). Note importance of

doing this before coding.

– Consumer must wait for producer to fill buffers. (condition

synchronization)



Operating Systems 24

– Producer must wait for consumer to empty buffers, if all buffer space is

in use. (condition synchronization)

– Only one process must manipulate buffer pool at once. (mutual
exclusion)

• A separate semaphore is used for each constraint. Explain the three
semaphores, what they mean, who P’s and who V’s.

• Initialization:

– Put all buffers in pool of empties.

– Initialize semaphores: empties = numBuffers, fulls= 0, mutex = 1;

• Producer process:

P(empties);
P(mutex);
get empty buffer from pool of empties;

V(mutex);
produce data in buffer;

P(mutex);
add full buffer to pool of fulls;

V(mutex);
V(fulls);

• Consumer process:

P(fulls);
P(mutex);

get full buffer from pool of fulls;
V(mutex);

consume data in buffer;
P(mutex);

add empty buffer to pool of empties;
V(mutex);
V(empties);



Operating Systems 25

• Important questions:

– Why does producer P(empties) but V(fulls)? Explain in terms of
creating and destroying resources.

– Why is order of P’s important? Deadlock (deadly embrace).

– Is order of V’s important?

– Could we have separate mutex semaphores for each pool?

– How would this be extended to have 2 consumers?

Producers and consumers produces something much like Unix pipes.

THIS IS AN IMPORTANT EXAMPLE! Go over the two classes of semaphore

usage again: mutual exclusion and scheduling.

Another example of semaphore usage: a shared database with readers and
writers. It is safe for any number of readers to access the database

simultaneously, but each writer must have exclusive access. Must use semaphores
to enforce these policies. Example: checking account (statement-generators are

readers, tellers are writers).

• Writers are actually readers too.

• Constraints:

– Writers can only proceed if there are no active readers or writers (use
semaphore OKToWrite).

– Readers can only proceed if there are no active or waiting writers (use

semaphore OKToRead).

– To keep track of who’s reading and writing, need some shared variables.
These are called state variables. However, must make sure that only one

process manipulates state variables at once (use semaphore Mutex).

• State variables:

– AR = number of active readers.

– WR = number of waiting readers.



Operating Systems 26

– AW = number of active writers.

– WW = number of waiting writers.

AW is always 0 or 1.

AR and AW may not both be non-zero.

• Initialization:

– OKToRead = 0; OKToWrite = 0; Mutex = 1;

– AR = WR = AW = WW = 0;

• Scheduling: writers get preference.

Reader Process:

P(Mutex);

if ((AW+WW) == 0) {
V(OKToRead);
AR = AR+1;

} else {
WR = WR+1;

}
V(Mutex);

P(OKToRead);
– read the necessary data;
P(Mutex);

AR = AR-1;
if (AR==0 && WW>0) {

V(OKToWrite);
AW = AW+1;

WW = WW-1;
}

V(Mutex);

Writer Process:



Operating Systems 27

P(Mutex);

if ((AW+AR+WW) == 0) {
V(OKToWrite);

AW = AW+1;
} else {

WW = WW+1;

}
V(Mutex);

P(OKToWrite);
– write the necessary data;

P(Mutex);
AW = AW-1;

if (WW>0) {
V(OKToWrite);
AW = AW+1;

WW = WW-1;
} else while (WR>0) {

V(OKToRead);
AR = AR+1;

WR = WR-1;
}
V(Mutex);

Go through several examples: (tell what happens)

• Reader enters and leaves system.

• Writer enters and leaves system.

• Two readers enter system.

• Writer enters system and waits.

• Reader enters system and waits.

• Readers leave system, writer continues.



Operating Systems 28

• Writer leaves system, last reader continues and leaves.

Questions:

• In case of conflict between readers and writers, who gets priority? Readers

can get locked out.

• Is the WW necessary in the writer’s first if? No: if there is a waiting writer,

then there must be an active reader or an active writer.

• Can OKToRead ever get greater than 1? What about OKToWrite?

• Is the first writer to execute P(Mutex) guaranteed to be the first writer to

access the data?



Operating Systems 29

7 Semaphore Implementation

Need a simple way of doing mutual exclusion in order to implement P’s and V’s.
We could use atomic reads and writes, as in the “too much milk” problem, but

these are very clumsy.
Furthermore, the busy wait in the “too much milk” implementation (i.e., the
while loop polling the note variable) is wasting CPU cycles. This can be avoided

if we implement P and V as system calls that block the threads that need to wait
for the semaphore to be greater than zero upon invoking P (by changing their

state to “Waiting”), and wake up threads that were blocked in a semaphore upon
another thread invoking V (by changing their state to “Ready”).

Uniprocessor solution: disable interrupts. Recall that the only way the

dispatcher regains control is through interrupts or through explicit requests.

typedef struct {

int count;
queue q; /* queue of threads waiting on this semaphore */

} Semaphore;

void P(Semaphore s)

{
Disable interrupts;

if (s->count > 0) {
s->count -= 1;
Enable interrupts;

return;
}

Add(s->q, current thread);
sleep(); /* re-dispatch */

Enable interrupts;
}



Operating Systems 30

void V(Semaphore s)

{
Disable interrupts;

if (isEmpty(s->q)) {
s->count += 1;

} else {

thread = RemoveFirst(s->q);
wakeup(thread); /* put thread on the ready queue */

}
Enable interrupts;

}

What do we do in a multiprocessor to implement P’s and V’s? Can’t just turn

off interrupts to get low-level mutual exclusion.

• Turn off all other processors?

• Use atomic read and write, as in “too much milk”?

In a multiprocessor, there will have to be busy-waiting at some level: can’t go to

sleep if don’t have mutual exclusion.

Most CISC machines provide some sort of atomic read-modify-write instruction.

Read existing value, store back in one atomic operation. E.g. Test and set
(oldval=TAS(addr, newval)).

Using TAS to build a spin lock: 1 means someone holds the lock, 0 means it’s OK
to proceed. Definition of TAS prevents two threads from getting a 0-to-1

transition (e.g., lock acquisition) simultaneously.

int spin lock = 0;
..

while (TAS(&spin lock, 1) != 0);
..

critical section
..

spin lock = 0;



Operating Systems 31

Modern RISC machines don’t provide read-modify-write instructions. Instead,

most of them provide a weaker mechanism that does not guarantee atomicity, but
detects interference.

• load-linked instruction (ldl): Loads a word from memory and sets a
per-processor flag associated with that word (usually stored in the cache).

• store operations to the same memory location (by any processor) reset all
processor’s flags associated with that word.

• store-conditionally instruction (stc): Stores a word iff the processor’s flag for

the word is still set; indicates success or failure.

Using ldl/stc for mutual exclusion:

int spin lock=0;

..
while (ldl(&spin lock) != 0 ‖ !stc(&spin lock, 1));
..

critical section
..

spin lock = 0;

Using ldl/stc to implement semaphores in a multiprocessor: For each semaphore,
keep an integer (lock) in addition to the semaphore integer and the queue of

waiting threads.

typedef struct {

int spin lock; /* initially 0 */
int count;

queue q; /* queue of threads waiting on this semaphore */
} Semaphore;

void P(Semaphore s)

{
Disable interrupts;



Operating Systems 32

while (ldl(s->spin lock) != 0 ‖ !stc(s->spin lock, 1));

if (s->count > 0) {
s->count -= 1;

s->spin lock = 0;
Enable interrupts;
return;

}
Add(s->q, current thread);

Remove(ReadyQueue, current thread);
SetState(current thread, WAITING);

s->spin lock = 0;
dispatch(); /* switch to first thread on the ready queue */

Enable interrupts;
}

void V(Semaphore s)
{

Disable interrupts;
while (ldl(s->spin lock) != 0 ‖ !stc(s->spin lock, 1));

if (isEmpty(s->q)) {
s->count += 1;

} else {
Thread t = RemoveFirst(s->q);
SetState(current thread, READY);

Add(ReadyQueue, current thread);
}

s->spin lock = 0;
Enable interrupts;

}

Why do we still have to disable interrupts in addition to using the spin lock with
ldl/stc?



Operating Systems 33

Important point: implement some mechanism once, very carefully. Then always

write programs that use that mechanism. Layering is very important.


