
Operating Systems 116

27 File Caching

Locality of reference in file accesses allows performance improvements through the

use of caching. This is yet another application of the principle of locality. Keep a
number of disk blocks in fast memory; when accessing disk, check the cache first.

Where are disk blocks cached?

• special purpose volatile memory in disk controller (PCs)

• fixed portion of main memory (BSD)

• variable portion of main memory (modern Unix); processes and filesystem

compete for physical memory

Disk block caches are maintained in software.

Problem: fast cache memory is volatile, but users expect disk files to be
persistent. In the event of a system crash (e.g., power failure) dirty disk blocks in
the cache are lost.

• Solution 1: use write-through cache

– modifications are written to disk immediately

– no performance advantage for disk writes

• Solution 2: limit potential data loss (Unix)

– write-through caching for metadata (i-nodes, directory, freelist blocks)

– write back dirty data blocks after no more than 30 seconds

– write back all dirty blocks during file close

• Solution 3: keep a log in separate disk or in fast non-volatile memory
(mainframe OS, databases)

– recovery program is run after a crash to reconstruct lost dirty blocks
from the log



Operating Systems 117

How is the disk cache implemented? Two approaches:

1) Set of kernel buffers maintained by the filesystem (buffer cache)

• with a read/write API, can implement precise LRU replacement

• not used for memory-mapped files

• need to decide how to partition physical memory among buffer cache and

VM cache uses.

– static partitioning during kernel configuration (BSD)

– dynamic adjustment of partitioning during runtime; for example, keep
track of VM page fault and disk cache miss frequencies, and try to

balance.

2) Memory-map all open files

• caching comes for free (just like normal VM); no separate file cache

• flexible sharing of physical memory

• VM page replacement policy does not discriminate between cached file data,
and other VM pages.

• read/write API can be supported by mapping open files into kernel address
space, and copying from/to user buffers.

Other performance-improving techniques:

• read-ahead: for sequential access, start reading next file block from disk
when application program reads the previous block.

• write-behind: start disk write, but don’t make application wait until the disk
operation completes.

• allows overlap of a processes’ computation with its own disk I/O.


