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27 File Caching

Locality of reference in file accesses allows performance improvements through the

use of caching. This is yet another application of the principle of locality. Keep a
number of disk blocks in fast memory; when accessing disk, check the cache first.

Where are disk blocks cached?

• special purpose volatile memory in disk controller (PCs)

• fixed portion of main memory (BSD)

• variable portion of main memory (modern Unix); processes and filesystem

compete for physical memory

Disk block caches are maintained in software.

Problem: fast cache memory is volatile, but users expect disk files to be
persistent. In the event of a system crash (e.g., power failure) dirty disk blocks in
the cache are lost.

• Solution 1: use write-through cache

– modifications are written to disk immediately

– no performance advantage for disk writes

• Solution 2: limit potential data loss (Unix)

– write-through caching for metadata (i-nodes, directory, freelist blocks)

– write back dirty data blocks after no more than 30 seconds

– write back all dirty blocks during file close

• Solution 3: keep a log in separate disk or in fast non-volatile memory
(mainframe OS, databases)

– recovery program is run after a crash to reconstruct lost dirty blocks
from the log
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How is the disk cache implemented? Two approaches:

1) Set of kernel buffers maintained by the filesystem (buffer cache)

• with a read/write API, can implement precise LRU replacement

• not used for memory-mapped files

• need to decide how to partition physical memory among buffer cache and

VM cache uses.

– static partitioning during kernel configuration (BSD)

– dynamic adjustment of partitioning during runtime; for example, keep
track of VM page fault and disk cache miss frequencies, and try to

balance.

2) Memory-map all open files

• caching comes for free (just like normal VM); no separate file cache

• flexible sharing of physical memory

• VM page replacement policy does not discriminate between cached file data,
and other VM pages.

• read/write API can be supported by mapping open files into kernel address
space, and copying from/to user buffers.

Other performance-improving techniques:

• read-ahead: for sequential access, start reading next file block from disk
when application program reads the previous block.

• write-behind: start disk write, but don’t make application wait until the disk
operation completes.

• allows overlap of a processes’ computation with its own disk I/O.


