Operating Systems 117

26 Application/Filesystem Interface

How do application programs access file data?
e explicit read/write operations (conventional)

e memory-mapped files

Read/Write interface
e file data is explicitly copied between disk file and process memory
e programs cannot directly access file data

e potential for double paging (process pages containing file data are paged out
to paging space, leading to redundant copies of file data on disk.)

FileHandle fhandle;
int offset, length;
char buffer[1024];

fhandle = Open(“pathname”);
pread(fhandle, buffer, length, offset);
{read/write file data in buffer}
pwrite(fhandle, buffer, length, offset);
close(thandle);

Memory-mapped files

e file is “mapped” into application’s address space by initializing virtual
memory so that the file serves as backing store for a region of the
application’s address space.

e file data is demand paged upon access to the mapped file

® 1O copying

Operating Systems 118

e program accesses file data directly

no double paging

processes that map the same file share physical memory that caches file data

no system call overhead (after initial setup)

elegant integration of file system and virtual memory

FileHandle fhandle;
int offset, length;
char *address;

fhandle = Open(“pathname”);

map(fhandle, offset, address, length);

{read /write file data by accessing memory range
[address,address+length]}

unmap (address, length);

close(fhandle);

Other filesystem related operations

e seek(pos) changes implicit per file pointer to specific offset within file (for
use with read/write)

e create/delete file
e link/unlink: add or remove a name entry for a file
e get/set file attributes:

— protection (access rights)
— owner /creator
— size

— creation time

Operating Systems 119

— time of last access/modification

— file type
e sync/flush: make sure all “dirty” cached file data is written to disk

e lock/unlock: file locking (discussed later)

