
Operating Systems 117

26 Application/Filesystem Interface

How do application programs access file data?

• explicit read/write operations (conventional)

• memory-mapped files

Read/Write interface

• file data is explicitly copied between disk file and process memory

• programs cannot directly access file data

• potential for double paging (process pages containing file data are paged out
to paging space, leading to redundant copies of file data on disk.)

FileHandle fhandle;
int offset, length;
char buffer[1024];

fhandle = Open(“pathname”);
pread(fhandle, buffer, length, offset);
{read/write file data in buffer}
pwrite(fhandle, buffer, length, offset);
close(fhandle);

Memory-mapped files

• file is “mapped” into application’s address space by initializing virtual
memory so that the file serves as backing store for a region of the
application’s address space.

• file data is demand paged upon access to the mapped file

• no copying



Operating Systems 118

• program accesses file data directly

• no double paging

• processes that map the same file share physical memory that caches file data

• no system call overhead (after initial setup)

• elegant integration of file system and virtual memory

FileHandle fhandle;
int offset, length;
char *address;

fhandle = Open(“pathname”);
map(fhandle, offset, address, length);
{read/write file data by accessing memory range

[address,address+length]}
unmap(address, length);
close(fhandle);

Other filesystem related operations

• seek(pos) changes implicit per file pointer to specific offset within file (for
use with read/write)

• create/delete file

• link/unlink: add or remove a name entry for a file

• get/set file attributes:

– protection (access rights)

– owner/creator

– size

– creation time



Operating Systems 119

– time of last access/modification

– file type

• sync/flush: make sure all “dirty” cached file data is written to disk

• lock/unlock: file locking (discussed later)


