
Virtualization
OS Lecture 21
UdS/TUKL WS 2015

MPI-SWS 1



Examples of Virtualization
» Qemu, Bochs, VMWare, Xen, Linux KVM, 

Microsoft Hyper V, Virtual PC, …

» Java virtual machine (VM), Python, 
JavaScript, .NET Runtime, …

» The UNIX process environment is a virtual 
machine.

» Linux syscall emulation on FreeBSD.

MPI-SWS 2



What is Virtualization?
» hypervisor & virtual machine monitor (VMM) provide a 
translation and isolation layer

» imitate (exclusive) platform X on top of (shared) 
platform Y

» X may or may not correspond to any actual hardware 
platform (e.g., Intel x86, Java VM)

» X and Y may or may not be the same (e.g., x86 on x86, 
x86 on PowerPC, JVM on any platform)

» Software for X may or may not be aware of the fact that 
X is not real, and may or may not know what Y is

MPI-SWS 3



Types of Virtualization
1. Process virtual machine: provide an (idealized) 

platform for the execution of a single program.

» typically provides high-level abstractions

» UNIX processes, Java VM, .NET VM, etc.

2. System virtual machine: provide a platform for 
the execution of a complete OS

» typically mimics existing hardware platform

» but can also provide higher-level interfaces

MPI-SWS 4



Benefits and Uses of System Virtualization

» isolation: by default, VMs share nothing
➞ security, reliability, quality of service

» configuration and dependency management

» server consolidation: save energy and hardware costs

» snapshots: "freeze" a copy of a live VM, continue 
execution later

» service elasticity: quickly deploy many more pre-
configured VMs in case of a load spike

» reliability: can migrate live VMs away from failing hosts 
without service interruption

MPI-SWS 5



Development and Research Uses

» hardware prototyping: test hardware that doesn't 
(yet) exist

» parallel driver development: have driver ready when 
hardware is ready

» kernel debugging: single-step kernel code and easily 
recover memory contents after crash

» deterministic replay: can precisely record and replay 
external inputs

» sandbox: can run & investigate code from untrusted 
sources (e.g., suspected malware)

MPI-SWS 6



Approach 1: Simulation
To virtualize X on top of Y:

» Write a program for Y that simulates an X machine.
➞ Example: Qemu can simulate ARM on x86

» Essentially an interpreter for X machine code…

» …and a simulator for essential platform devices (disk 
controller, network, memory, BIOS)

» Advantages: flexible, versatile, always possible, 
unmodified guest OS 

» Disadvantage: very slow (despite JIT compilation, etc.)

MPI-SWS 7



Approach 2: Emulation 
(aka Full Virtualization)
To virtualize X on top of X:

» Let guest OS execute directly on physical CPUs, but in unprivileged mode.
When guest OS tries to execute privileged instruction, it will trap into 
hypervisor.

» Trap is relayed to VMM, which can then check and emulate the effects 
of the privileged instruction, after which native execution resumes

» Advantages: fast, often within a few percent of native execution; 
unmodified guest OS

» Disadvantages: can only support native architecture (e.g., x86 on x86, 
but not ARM on x86), frequent traps are slow.

MPI-SWS 8



Challenge: Fail-Silent Instructions

What if some instructions behave differently in kernel 
and user mode, but don't cause traps in user mode?

» Fundamentally need traps to emulate correct behavior; 
otherwise fidelity of emulation not guaranteed.

» binary rewriting: edit kernel binary before or during 
execution to replace all fail-silent op codes (e.g., 
replace with illegal instructions to force trap)

» Fail-silent instructions make it more difficult to 
virtualize a platform both efficiently and 
transparently.

MPI-SWS 9



Approach 3: Para-Virtualization

To virtualize a variant of X on top of X:

» In contrast to simulation and full virtualization, 
para-virtualization is not transparent to the guest OS.

» The OS needs to cooperate by making hypercalls 
instead of using privileged instructions.

» Advantages: most efficient form of virtualization 
(can batch hypercalls)

» Disadvantage: not transparent (e.g., Windows does 
not support the Xen para-virtualization ABI)

MPI-SWS 10



Challenges and Inefficiencies
» How should the idle loop be realized in a guest OS?

» Lock-holder preemption (LHP) problem: what if spin lock 
in guest OS kernel is held by a virtual CPU (vCPU) that was 
preempted by hypervisor scheduler?

» Cross-VM interference: contention for shared caches, 
shared memory bus, I/O bandwidth can cause substantial 
performance fluctuation.

» Why is virtualization used as a security mechanism? What 
if VMs attack the hypervisor?

» What if hypervisors attack the VM (e.g., to steal secrets)? 
(➞ Intel SGX extensions)

MPI-SWS 11


