
Scheduling
OS Lecture 11

UdS/TUKL WS 2015

MPI-SWS 1

Scheduling
What is “scheduling” and why is it necessary?

» To share a serially reusable resource among
multiple processes.

» processors, I/O links, bandwidth, memory…

» Schedule: determine the order in which use is
granted. The policy, not the low-level mechanics
of stopping and resuming (➞ dispatching).

» Arises naturally when resources are virtualized.

MPI-SWS 2

Scheduling Goals
» efficient use: don’t waste available capacity (processor

time, bandwidth, …)

» low overheads: don’t waste too much resource capacity on
resource management

» timeliness: users typically have some expectations
regarding timing. Examples:

» minimize response times

» provably meet (hard) deadlines

» provide “smooth” user interface (soft deadlines)

» meet customer service level agreements (SLAs)…

MPI-SWS 3

Types of Scheduling Problems

» preemptive vs. non-preemptive: a matter of
timescale and cost

» uni- vs. multiprocessor scheduling: implicit or
explicit load balancing needed for latter

» identical vs. uniform vs. heterogenous
multiprocessors

» different objectives: make span, average
response time, minimize (average/max)
lateness, minimize (average/max) tardiness, …

MPI-SWS 4

FIFO: First-In First-Out /
FCFS: First-Come First-Served

Policy: run jobs in order of arrival until they
complete (or block).

POSIX: Available as SCHED_FIFO policy.

» Advantages: trivial implementation, minimal
overheads (doubly linked list).

» Disadvantage: long-running jobs can dominate
the resource, starvation.

MPI-SWS 5

RR: Round Robin
Policy: allocate resource in fixed-length time slices,
preempt at end of time slice.

POSIX: Available as SCHED_RR policy.

» UNIX time-slice length used to be 100ms; nowadays
10ms is more appropriate.

» Advantages: avoids starvation; ensures fairness.

» Disadvantages: more preemptions; increased
average response times; with many ready processes,
bad responsiveness (system feels “sluggish” to user).

MPI-SWS 6

Example: Average Response Times

Three processes A, B, C arrive at times 0, 1, 2, and
each requires 50ms to finish. What is the average
response time with FIFO and RR (time slice: 1ms)?

» FIFO: A terminates at time 50, B terminates at
time 100, C terminates at time 150: ➞ 100ms

» RR: A terminates at time 148, B terminates at
time 149, C terminates at time 150: ➞ 149ms

» What if C requires only 10ms, whereas A
requires 90ms?

MPI-SWS 7

Example: I/O-bound vs. CPU-bound process

Process A: compute 1ms, blocking I/O for 10ms,
repeat…
Process B: infinite compute loop, no I/O

What happens with FIFO? What happens to I/O
utilization when using RR with 100ms time slices?

» FIFO: B takes over processor, A starves.

» RR-100: I/O utilization drops to ~10% because B prevents A from
issuing new I/O commands

» What happens if we use a shorter time slice? How to pick the
right time slice length?

MPI-SWS 8

Shortest Remaining Time
AKA: “Shortest Time to Completion First” (STCF)

Policy: always schedule job which requires the
least time to complete (or block).

» Advantages: optimal with regard to average
response times, favors interactive processes.

» Disadvantage: requires knowledge of the
future…

MPI-SWS 9

Locally, Past Behavior ≈ Future Behavior

How can we anticipate whether or not a process is
going to hog the processor?

» Observation: program execution may move
through different phases, but in the short term,
I/O-bound processes stay I/O-bound, and CPU-
bound processes stay CPU-bound.

» Idea: track execution and blocking times to
adaptively predict future resource usage.

» This can be used to approximate STCF.

MPI-SWS 10

MLFQ: Multi-Level Feedback Queues

Idea: initially assume that a job will finish quickly,
and demote long-running jobs.

» Have multiple priority levels, with one RR queue per priority

» time slice: high prio = short, low prio = long

» New jobs start at the highest priority

» If job does not finish before time slice ends, then lower
priority by one and double time slice length.
➞ “exponential queue”

» Problem: How can a bursty process recover priority?

MPI-SWS 11

4.4BSD Scheduler
Idea: adaptive like MLFQ, but use a constant time
slice length determine priority based on recent
CPU usage and allow fine-tuning with nice values.

» 128 priorities (0-127, 0-49 reserved for kernel)

» time slice length: 100ms
➞ unchanged in 30 years!

» for each process, estimate recent CPU usage

» user can set nice value (range: -20 to +20)

MPI-SWS 12

4.4BSD Scheduler: Priority
The priority of a running process is recalculated
every four clock ticks (40ms).

Given a usage estimate and a nice value
, the priority is set to:

(is capped to .)

MPI-SWS 13

4.4BSD: Usage Tracking
On every clock tick (every 10ms), the variable

 of the running process is incremented.

Once per second, the accumulated usage of each ready
process is aged (➞ exponentially weighted moving average):

MPI-SWS 14

4.4BSD: Waking Processes
When a process is blocked, it does not take part in
“aging” ➞ its CPU usage is not “forgotten.”

Solution: “fixup” of waking processes.

Where is the time the process was
blocked (in seconds).

MPI-SWS 15

4.4BSD Scheduler: Issues
Can you think of some potential problems with
the 4.4BSD design?

» What about make-like tasks that spawn many
compute-intensive, but short-running processes?

» What if userspace processes have access to
accurate high-resolution timers?

MPI-SWS 16

Generalized Processor Sharing

What is a “fair” share if some processes are more
important than others (but none should starve)?

MPI-SWS 17

Generalized Processor Sharing

What is a “fair” share if some processes are more
important than others (but none should starve)?

Proportional Share Fairness: given competing
processes and a weight for each process, the
fair share of process over an interval of length
is:

MPI-SWS 18

Lottery Scheduling
Idea: approximate prop-share fairness stochastically.

» Have some number of lottery tickets (token
abstraction)

» Give each process a number of tickets proportional
to its weight

» At beginning of each time slice, randomly draw a
winning ticket and schedule the winner.

» Neat concept, but not widely adopted for processor
scheduling: takes a relatively long time to converge.

MPI-SWS 19

STFQ: Start-Time Fair Queuing (1/2)

Idea: FIFO in principle, but make time “run
slower” for heavy-weight processes.

» Track for each process a virtual time.

» Always schedule the process with the earliest
virtual time (FIFO).

» When process is scheduled, advance virtual time
at a rate proportional to its weight.

MPI-SWS 20

STFQ: Start-Time Fair Queuing (2/2)

Let denote virtual time of process .

Initially, (time of process creation).

After running for time units, is advanced:

» What happens if a process blocks?

MPI-SWS 21

Fair Scheduling: Further Reading

There exist many, many more fairness-based
schedulers:

Weighted Fair Queuing (WFQ), Virtual Time Round
Robin (VTRR), Group Ratio Round Robin (GR3), …

The Linux “Completely Fair Scheduler” (CFS) is also
based on fairness. However, it is certainly not
“completely fair” and in fact quite difficult to analyze.

In contrast, provable lag bounds are known for
WFQ, VTRR, GR3, etc.

MPI-SWS 22

