
Deadlock
OS Lecture 10

UdS/TUKL WS 2015

MPI-SWS 1



Deadlock
When is a system deadlocked?

» If there exists a set of processes such that every 
process in the set is waiting for a resource held by 
another process in the set.

» Deadlock is stable: since all processes are 
waiting, the situation will persist.

» Examples: badly ordered P() operations on 
binary semaphores, two processes both waiting 
for messages from each other

MPI-SWS 2



Necessary Preconditions for Deadlock

What is required for deadlock to occur?

1. Mutually exclusive access: resources cannot be 
shared and processes must wait.

2. No resource preemption: once granted, access 
to a resource cannot be revoked.

3. Hold and wait: processes can hold resources 
while they are waiting.

4. Cycle in the wait-for graph

MPI-SWS 3



What to do about deadlock?
Deadlock is a fundamental problem that cannot be 
ignored in real-world systems. How to handle it?

1. Detection: at runtime, detect when a deadlock has 
occurred and start some recovery routine.

» For example, restart all (a subset of the) deadlocked 
processes.

2. Prevention: organize the system such that deadlock is 
impossible.

» Both at design time and at runtime (e.g., by following 
certain locking rules or protocols)

MPI-SWS 4



Preventing Deadlocks by Design

How can we reliably avoid deadlocks?

1. Prevent or prohibit one of the necessary 
(pre-)conditions of deadlock.

2. Predict future resource needs and delay 
“potentially problematic” requests. 

» Difficult in general-purpose systems…

MPI-SWS 5



Possible Avoidance Strategies

Which of these approaches are practical?

1. Don’t allow exclusive access.

2. Always have enough resources available:
➞ (over-)provision for the worst case

3. Don’t allow processes to wait for resources.

4. Take away already granted resources (resource 
preemption).

5. Force all-or-nothing allocation semantics
➞ processes must state all needed resources up front

MPI-SWS 6



Ordered Requests
Observation: edges in the wait-for graph are determined 
by the order in which resources are requested…

» So structure code such that cycles are impossible!

» Impose a strict (i.e., irreflexive) partial order “<” on 
the set of all resources

» Rule: a resource R2 may be requested while 
already holding R1 if and only if R1 < R2.

» Finding such a strict partial order requires design-
time knowledge.

MPI-SWS 7



Banker’s algorithm (by Dijkstra)

1. Each process declares maximum number of needed instances of 
each resource type (e.g., tapes, semaphores, pages, etc.).

2. Track for each process the number of currently loaned 
instances.

3. Define (remaining) #needed = #max - #loaned.

4. When a request for more resources is made, check that 
granting it results in a safe state:

» assume that each process will request #needed resources of 
each type

» assume that resources are released only on termination

» there must exist a feasible sequence of process terminations

MPI-SWS 8



Finding a feasible termination sequence

1. While there are “running” processes:

2. Does there exist a process P such that, for each 
resource type, #needed ≤ #available? If not, 
return unsafe.

3. Otherwise, assume P terminates and releases 
all resources (➞ update #available); go to 1.

4. When no more “running” processes remain, 
return safe (➞ a feasible termination sequence 
has been found).

MPI-SWS 9



Priority Ceiling Protocol
For priority-scheduled uniprocessor systems.

» Before runtime, for each resource R, define the priority 
ceiling as the priority of the highest-priority process that 
will ever request R.

» At runtime, define the system ceiling as the maximum of 
the priority ceilings of all resources currently allocated.

» When a process P requests a resource R, the request is 
granted only if either (i) P's priority is higher than the 
current system ceiling, or (ii) P was the last process to 
raise the system ceiling.

MPI-SWS 10


