
Message Passing
OS Lecture 10

UdS/TUKL WS 2015

MPI-SWS 1

Communicating with Messages

Explicit communication: sending and receiving of
messages via mailboxes.

System object:
mailbox_t mbox; // UNIX-like: typically a file descriptor

Producer/sender process: Consumer/recipient process:
char local_buf[1000]; char local_buf[1000];
prepare_message(local_buf);
send(local_buf, mbox); receive(local_buf, mbox);
 processs_message(local_buf);

MPI-SWS 2

Why use explicit messages instead of shared memory?

» No side effects / no sharing ➞ less error-prone

» No trust required: can validate messages before processing

» clear separation of interface and implementation

» enables/simplifies integration of independently developed
components

» distribution can be transparent: receiver could be running on a
different computer (➞ scaling out)

» can interpose proxies for various reasons (logging, validating,
filtering, load balancing, etc.)

» on machines with non-uniform memory (NUMA), sending
messages can be more efficient

MPI-SWS 3

Communication Styles
There are two principle messaging patterns.

1. One-way communication: producer-consumer
pattern

» messages flow in one direction (like a pipe)

2. Two-way communication: like a conversation

» messages flow back and forth

» peer-to-peer or client-server

MPI-SWS 4

Example: Client & Server Communication

Pattern: client asks server to carry out a named
operation, server replies with result (or error).

MPI-SWS 5

Example: Client & Server Communication

Pattern: client asks server to carry out a named
operation, server replies with result (or error).

System objects: mailbox_t mbox1, mbox2;

Client process: Server process:
string_t response; string_t command, answer;
send(“read /path/to/file”, mbox1); receive(command, mbox1);
receive(response, mbox2); // ... decode command ...
 // ... generate answer ...
 send(answer, mbox2);

MPI-SWS 6

Client-Server Pattern vs. Procedure Calls

How is a client-server invocation/response pair
similar to / different from regular procedure calls?

» Similarities: well-defined parameters; well-
defined result type; referenced by name;
defined return address (i.e., where to continue
execution of client)

» Differences: cross-language procedure calls are
difficult; procedure calls don’t fail — either call
returns or entire process crashes (all or nothing)

MPI-SWS 7

Remote Procedure Calls
Because client-server communication is so similar to
procedure calls, the invocation of operations on a server is
often abstracted as remote procedure calls (RPC).

» hides messaging: looks like a regular procedure call in the
client program (but handling failure cases can be tricky)

» A library/framework/middleware/code generator
transparently takes care of marshalling and unmarshalling
procedure parameters (➞ serializing into / deserializing
from a language-independent message format)

» Examples: Google Protocol Buffers, Apache Thrift, CORBA,
Java RMI, XML-RPC, SOAP, JSON-RPC, …

MPI-SWS 8

Message System Design Choices

While sending and receiving messages is
conceptually simple, a large variety of semantics
can be found in practice.

» What is being addressed?

» Buffering: what to do with messages that nobody is
currently waiting to receive?

» What to do when an operation cannot be immediately
carried out? (Example: buffer full)

» What do messages look like? Fixed size? Explicit message
boundaries? Human readable?

MPI-SWS 9

Mailboxes vs. Processes
Do you send messages to abstract mailboxes or directly to processes?

1. One mailbox per process: send to process name: simple, but
restrictive

» e.g., UNIX signals like SIGTERM

2. Mailboxes are first-class entities: send to mailbox name

» e.g., UNIX sockets representing ports like localhost:8080

» can have multiple mailboxes per process

» can share mailboxes between processes

» can pass mailboxes to other processes

MPI-SWS 10

Buffering
What happens to logically sent, but not yet received messages?

1. Dynamically sized buffers: OS allocates as much memory as
needed (or until it runs out)

2. Fixed-size buffers: up to a pre-determined limit, messages
are copied & stored. What if no more space? Drop oldest?
Reject latest?

3. Single-message buffers with register semantics: always keep
the latest message (exactly one).

4. No buffering: message delivered only when receiving
process is present (rendezvous communication).

MPI-SWS 11

Blocking vs. Non-Blocking Operations

What to do if intended operation cannot be
immediately carried out?

» Blocking receive: return message if available, otherwise
wait until message arrives.

» Non-blocking receive: return error / “buffer empty” if
no message is available.

» Blocking send: copy message into mailbox; if necessary
wait until space is available.

» Non-blocking send: return “full” (if buffered) or
“recipient unavailable” (if rendezvous protocol)

MPI-SWS 12

Non-Blocking Rendezvous Protocols?

What happens if you combine rendezvous
communication with non-blocking send and receive
operations?

» rendezvous communication = message not buffered

» non-blocking send = sender doesn’t wait for recipient to
show up

» non-blocking receive = recipient doesn’t wait for sender
to show up

» Most likely outcome: no communication at all.
➞ Buffering required, or one party has to wait.

MPI-SWS 13

Waiting for Messages
One mailbox, one waiting process? One mailbox, many waiting
processes? Many mailboxes, one waiting process?

» Typically, many processes can wait on the same mailbox.

» How are message distributed among recipients? FIFO? By
chance?

» Modern systems also allow processes to wait on several mailboxes at
once.

» e.g., UNIX select() operation

» logically returns first message to arrive in any of the mailboxes

» useful for network services, windowing systems, etc.

MPI-SWS 14

Message Structure
Does the system enforce any particular message
structure?

» unstructured streams: e.g., UNIX pipes, TCP, …

» explicit message boundaries, variable size: UDP

» fixed-size messages: e.g., ring buffers

» references to protected objects (e.g., access
tokens)

MPI-SWS 15

Delivery Guarantees
Are messages always guaranteed to be delivered?

» no guarantees, best effort: e.g., UDP

» guaranteed delivery, but out of order possible:
e.g., SCTP

» guaranteed, in-order delivery: e.g., TCP

» guaranteed, all-or-nothing: distributed
transactions (➞ distributed systems course)

MPI-SWS 16

Message Passing vs. Shared Memory

Which one would you rather use?

» fundamentally of equivalent power

» can implement DSM over message-passing API

» can implement message-passing API using shared memory

» result in very different styles of programming

» personal preferences vary…

» In practice: scalability, distribution, & efficiency requirements
force a combination of both styles (“right tool for the job”).

» Both subject to deadlock risks…

MPI-SWS 17

