
Multicore
OS Lecture 22

UdS/TUKL WS 2015

MPI-SWS 1

Multicore
2001: IBM POWER4, dual-core PowerPC

2006: Intel Core Duo, dual-core x86

2007: Tilera TILE64, 64 cores

2012: Kalray MPPA-256, 1 socket, 256 cores

2015: Intel Xeon E7
8 sockets × 18 cores/socket × 2 HW threads/core = 288
hardware threads (HTs) to be scheduled by OS!

2013: Oracle SPARC T5
8 sockets × 16 cores/socket × 8 HW threads/core = 1024 HTs!

MPI-SWS 2

Why?
» power wall: can’t increase frequency without

chips running too hot / costing too much

» memory wall: RAM outpaced by processor
speeds, cannot get data and instructions to
processor quickly enough ➞ caches

» ILP (= instruction-level parallelism) wall: can’t
keep pipeline busy w/ single instruction stream

» These trends are unlikely to change in the
foreseeable future.

MPI-SWS 3

Challenges
1. How to “find” and expose parallelism in

applications?

2. How to efficiently schedule and load-balance
that many cores/HTs?

3. How to synchronize efficiently across that many
cores/HTs?

4. How to synchronize correctly?

MPI-SWS 4

Memory Hierarchy
» UMA: uniform memory architecture

» NUMA: non-uniform memory architecture

» cache consistency

» cache-line bouncing

» false sharing

» cache interference

MPI-SWS 5

Memory Consistency
» sequential consistency ≈ serializability

execution equiv. to some sequential interleaving of instr.

» relaxed memory models

» reorder writes w.r.t. program order

» reorder reads w.r.t. program order

» reorder reads and writes

» relaxed atomicity: some processors read some
writes early

» memory barrier / fence: enforce program order

MPI-SWS 6

Scalability and
Synchronization

MPI-SWS 7

Kernel Scalability Basics
» coarse-grained locking ➞ fine-grained locking

» ensure data structures are cache-line-aligned

» minimize access to shared data structures

» use partitioned per-processor data structures

» maintain cache affinity

» cache partitioning / coloring

» employ efficient & scalable synchronization
primitives…

MPI-SWS 8

Non-Scalable Ticket Spin Lock
volatile unsigned int arrival_counter = 0, now_serving = 0;
void lock() {
 unsigned int ticket;
 ticket = atomic_fetch_and_inc(&arrival_counter);
 while (ticket != now_serving)
 ; // do nothing — why is this not scalable?
 memory_barrier(); // when and why needed?
}
void unlock() {
 memory_barrier(); // when and why needed?
 now_serving++;
}

MPI-SWS 9

Scalable MCS Queue Lock
J. Mellor-Crummey & M. Scott. Algorithms for scalable
synchronization on shared-memory multiprocessors. ACM Transactions
on Computer Systems, pages 21–65, Volume 9, Number 1, 1991

struct qnode {
 volatile struct qnode* next;
 volatile bool blocked;
}
struct qnode* last = NULL;

» CAS — compare-and-swap: given a memory location, an expected
value, and a new value, store the new value only if the expected
value matches the actual value

MPI-SWS 10

Scalable MCS Queue Lock — Lock Operation

void lock(struct qnode* self) {
 struct qnode* prev;
 self->next = NULL;
 prev = atomic_fetch_and_store(&last, self);
 if (prev != NULL) {
 self->blocked = true;
 memory_barrier();
 prev->next = self;
 while (self->blocked)
 ; // do nothing — why is this scalable?
 } else memory_barrier();
}

MPI-SWS 11

Scalable MCS Queue Lock — Unlock Operation

void unlock(struct qnode* self) {
 memory_barrier();
 if (self->next == NULL) {
 if (compare_and_swap(&last, self, NULL))
 return; // CAS returns true if stored
 else
 while (self->next == NULL)
 ; // do nothing
 }
 self->next->blocked = false;
}

MPI-SWS 12

Read-Copy Update (RCU)
» Problem with reader-writer locks: every readside critical

section requires two writes (to the lock itself)!

» RCU: make (very frequent) reads extremely cheap, at the
expense of (infrequent) writers.

» Idea: use execution history to synchronize.

» Shared pointer to current version of shared object;
dereferenced exactly once by each reader.

» Instead of updating in place, writer makes a copy, updates
the copy, publishes the copy by exchanging current-version
pointer, and then (later) garbage-collects the old version.

MPI-SWS 13

Simple RCU Implementation

Processor in quiescent state: not using RCU-
protected resource.

Grace period: every processor is guaranteed to have
been in quiescent state at least once.
➞ garbage-collect after grace period ends

» readers: execute non-preemptively

» writer: grace period ends after every processor has
context-switched at least once

» multiple writers: serialize with spin lock

MPI-SWS 14

Non-Blocking Synchronization

Idea: synchronize, but without mutual exclusion.

» Design data structures to allow safe concurrent access.

» No waiting, no possibility of deadlock.

» Wait-free: process is guaranteed to progress in bounded
number of steps, no matter what.

» Lock-free: if two or more processes conflict, at least one
is guaranteed to progress; the other(s) may have to retry.

» Obstruction-free: progress is guaranteed only in absence
of contention; all conflicting processes may have to retry.

MPI-SWS 15

Example: Wait-free Bounded Buffer

char buffer[BUF_SIZE]; int head = 0; int tail = 0;

Assumption: one producer, one consumer.

MPI-SWS 16

Example: Wait-free Bounded Buffer

char buffer[BUF_SIZE]; int head = 0; int tail = 0;
bool TryProduce(char item) {
 if ((tail + 1) % BUF_SIZE == head)
 return false; // buffer full
 else {
 buffer[tail] = item;
 tail = (tail + 1) % BUF_SIZE;
 return true;
 }
}

MPI-SWS 17

Example: Wait-free Bounded Buffer

bool TryConsume(char *item) {
 if (tail == head)
 return false; // buffer empty
 else {
 *item = buffer[head];
 head = (head + 1) % BUF_SIZE;
 return true;
 }
}
MPI-SWS 18

Example: Lock-free Queue
struct QElem {
 struct Item *item;
 struct QElem *next;
}
struct QElem *last = NULL;

Assumption: any number of threads.

» ldl — load-linked, load a value from memory and start
monitoring location that was read

» stc — store-conditional, store a value to a monitored
location, but only if it hasn’t been written since ldl

MPI-SWS 19

Example: Lock-free Queue
struct QElem {
 struct Item *item;
 struct QElem *next;
}
struct QElem *last = NULL;
void AppendToTail(struct Item *item) {
 struct QElem *new = malloc(sizeof(QElem));
 new->item = item;
 do {
 new->next = ldl(&last);
 } while(!stc(&last, new));
}

MPI-SWS 20

Example: Lock-free Queue
struct QElem *last = NULL;

bool ItemIsInList(Item *item) {
 struct QElem *current = last;
 while (current != NULL) {
 if (current->item == item)
 return true;
 current = current->next;
 }
 return false;
}

MPI-SWS 21

Example: Lock-free Queue
struct QElem *RemoveTail() {
 do {
 struct QElem *current = ldl(&last);
 if (current == NULL)
 return NULL;
 } while(!stc(&last, current->next));
 return current;
}

MPI-SWS 22

Universal Lock-free Object
struct any_object { ... };
struct any_object *current_version;
void do_update() {
 ???
}

Like RCU: make a private copy, update copy, then
publish with CAS.

MPI-SWS 23

Universal Lock-free Object
struct any_object { ... };
struct any_object *current_version;
void do_update() {
 struct any_object *cpy = alloc_object();
 do {
 struct any_object *old = current_version;
 memcpy(cpy, old, sizeof(*old));
 cpy->some_field = … // perform update on copy
 } while (!CAS(¤t_version, old, cpy));
}

MPI-SWS 24

The ABA Problem
» When is it safe to reclaim or reuse old object?

» ABA problem: CAS succeeds despite interleaved
updates if expected value happens to be restored

» “same value” (CAS) vs. “no writes” (ldl/stc)

» limited solution: tag bits / version counter
(➞ CAS2, “double CAS”)

» general solution: limited concurrent GC
(➞ e.g., hazard pointers)

MPI-SWS 25

OS Design for
Multicore

MPI-SWS 26

Multikernels
Idea: a multicore kernel without shared memory.

Motivation:

» cache coherency can be a scalability limit: how many
cores/sockets can you keep coherent without slowing
down the entire system?

» core specialization will increase hardware heterogeneity:
fast cores, slow cores, I/O cores, GPUs, integer cores…

» platform diversity: run on everything from smartphones
to supercomputers; difficult to optimize for any platform

MPI-SWS 27

Multikernel Design Principles

1. Make all inter-core communication explicit.

2. Make OS structure hardware-neutral.
(On top of a shallow HW-specific layer.)

3. View state as replicated instead of shared.

MPI-SWS 28

Multikernel Design (Bauman et al., 2009)

The Multikernel: A new OS architecture for scalable multicore systems

Andrew Baumann⇤, Paul Barham†, Pierre-Evariste Dagand‡, Tim Harris†, Rebecca Isaacs†,
Simon Peter⇤, Timothy Roscoe⇤, Adrian Schüpbach⇤, and Akhilesh Singhania⇤

⇤Systems Group, ETH Zurich
†Microsoft Research, Cambridge ‡ENS Cachan Bretagne

Abstract
Commodity computer systems contain more and more
processor cores and exhibit increasingly diverse archi-
tectural tradeo↵s, including memory hierarchies, inter-
connects, instruction sets and variants, and IO configu-
rations. Previous high-performance computing systems
have scaled in specific cases, but the dynamic nature of
modern client and server workloads, coupled with the
impossibility of statically optimizing an OS for all work-
loads and hardware variants pose serious challenges for
operating system structures.

We argue that the challenge of future multicore hard-
ware is best met by embracing the networked nature of
the machine, rethinking OS architecture using ideas from
distributed systems. We investigate a new OS structure,
the multikernel, that treats the machine as a network of
independent cores, assumes no inter-core sharing at the
lowest level, and moves traditional OS functionality to
a distributed system of processes that communicate via
message-passing.

We have implemented a multikernel OS to show that
the approach is promising, and we describe how tradi-
tional scalability problems for operating systems (such
as memory management) can be e↵ectively recast using
messages and can exploit insights from distributed sys-
tems and networking. An evaluation of our prototype on
multicore systems shows that, even on present-day ma-
chines, the performance of a multikernel is comparable
with a conventional OS, and can scale better to support
future hardware.

1 Introduction

Computer hardware is changing and diversifying faster
than system software. A diverse mix of cores, caches, in-
terconnect links, IO devices and accelerators, combined
with increasing core counts, leads to substantial scalabil-
ity and correctness challenges for OS designers.

x86

Async messages

App

x64 ARM GPU

App App

OS node OS node OS node OS node

State
replica

State
replica

State
replica

State
replica

App

Agreement
algorithms

Interconnect

Heterogeneous
cores

Arch-specific
code

Figure 1: The multikernel model.

Such hardware, while in some regards similar to ear-
lier parallel systems, is new in the general-purpose com-
puting domain. We increasingly find multicore systems
in a variety of environments ranging from personal com-
puting platforms to data centers, with workloads that are
less predictable, and often more OS-intensive, than tradi-
tional high-performance computing applications. It is no
longer acceptable (or useful) to tune a general-purpose
OS design for a particular hardware model: the deployed
hardware varies wildly, and optimizations become obso-
lete after a few years when new hardware arrives.

Moreover, these optimizations involve tradeo↵s spe-
cific to hardware parameters such as the cache hierarchy,
the memory consistency model, and relative costs of lo-
cal and remote cache access, and so are not portable be-
tween di↵erent hardware types. Often, they are not even
applicable to future generations of the same architecture.
Typically, because of these di�culties, a scalability prob-
lem must a↵ect a substantial group of users before it will
receive developer attention.

We attribute these engineering di�culties to the ba-
sic structure of a shared-memory kernel with data struc-
tures protected by locks, and in this paper we argue for
rethinking the structure of the OS as a distributed sys-
tem of functional units communicating via explicit mes-

1

MPI-SWS 29

Barrelfish (Bauman et al., 2009)

Figure 5: Barrelfish structure

we have liberally borrowed ideas from many other oper-
ating systems.

4.1 Test platforms

Barrelfish currently runs on x86-64-based multiproces-
sors (an ARM port is in progress). In the rest of this pa-
per, reported performance figures refer to the following
systems:

The 2⇥4-core Intel system has an Intel s5000XVN
motherboard with 2 quad-core 2.66GHz Xeon X5355
processors and a single external memory controller. Each
processor package contains 2 dies, each with 2 cores and
a shared 4MB L2 cache. Both processors are connected
to the memory controller by a shared front-side bus, how-
ever the memory controller implements a snoop filter to
reduce coherence tra�c crossing the bus.

The 2⇥2-core AMD system has a Tyan Thunder
n6650W board with 2 dual-core 2.8GHz AMD Opteron
2220 processors, each with a local memory controller
and connected by 2 HyperTransport links. Each core has
its own 1MB L2 cache.

The 4⇥4-core AMD system has a Supermicro H8QM3-
2 board with 4 quad-core 2.5GHz AMD Opteron 8380
processors connected in a square topology by four Hy-
perTransport links. Each core has a private 512kB L2
cache, and each processor has a 6MB L3 cache shared
by all 4 cores.

The 8⇥4-core AMD system has a Tyan Thunder S4985
board with M4985 quad CPU daughtercard and 8 quad-
core 2GHz AMD Opteron 8350 processors with the in-
terconnect in Figure 2. Each core has a private 512kB L2
cache, and each processor has a 2MB L3 cache shared by
all 4 cores.

4.2 System structure

The multikernel model calls for multiple independent OS
instances communicating via explicit messages. In Bar-
relfish, we factor the OS instance on each core into a
privileged-mode CPU driver and a distinguished user-
mode monitor process, as in Figure 5 (we discuss this
design choice below). CPU drivers are purely local

to a core, and all inter-core coordination is performed
by monitors. The distributed system of monitors and
their associated CPU drivers encapsulate the functional-
ity found in a typical monolithic microkernel: schedul-
ing, communication, and low-level resource allocation.

The rest of Barrelfish consists of device drivers and
system services (such as network stacks, memory allo-
cators, etc.), which run in user-level processes as in a
microkernel. Device interrupts are routed in hardware to
the appropriate core, demultiplexed by that core’s CPU
driver, and delivered to the driver process as a message.

4.3 CPU drivers
The CPU driver enforces protection, performs authoriza-
tion, time-slices processes, and mediates access to the
core and its associated hardware (MMU, APIC, etc.).
Since it shares no state with other cores, the CPU driver
can be completely event-driven, single-threaded, and
nonpreemptable. It serially processes events in the form
of traps from user processes or interrupts from devices or
other cores. This means in turn that it is easier to write
and debug than a conventional kernel, and is small2 en-
abling its text and data to be located in core-local mem-
ory.

As with an exokernel [22], a CPU driver abstracts very
little but performs dispatch and fast local messaging be-
tween processes on the core. It also delivers hardware
interrupts to user-space drivers, and locally time-slices
user-space processes. The CPU driver is invoked via
standard system call instructions with a cost comparable
to Linux on the same hardware.

The current CPU driver in Barrelfish is heavily spe-
cialized for the x86-64 architecture. In the future, we
expect CPU drivers for other processors to be simi-
larly architecture-specific, including data structure lay-
out, whereas the monitor source code is almost entirely
processor-agnostic.

The CPU driver implements a lightweight, asyn-
chronous (split-phase) same-core interprocess commu-
nication facility, which delivers a fixed-size message to
a process and if necessary unblocks it. More complex
communication channels are built over this using shared
memory. As an optimization for latency-sensitive opera-
tions, we also provide an alternative, synchronous oper-
ation akin to LRPC [9] or to L4 IPC [44].

Table 1 shows the one-way (user program to user pro-
gram) performance of this primitive. On the 2⇥2-core
AMD system, L4 performs a raw IPC in about 420 cy-
cles. Since the Barrelfish figures also include a sched-

2The x86-64 CPU driver, including debugging support and libraries,
is 7135 lines of C and 337 lines of assembly (counted by David
A. Wheeler’s “SLOCCount”), 54kB of text and 370kB of static data
(mainly page tables).

8

Barrelfish is the multikernel research OS that
popularized the idea.

MPI-SWS 30

Monitors in Barrelfish
» keep track of OS state (memory allocation

tables, capabilities/access rights, etc.)

» each monitor has a local copy: local operations
are extremely fast

» Global operations are synchronized explicitly
among all monitors with agreement protocols

» adopt techniques from distributed systems

» e.g., two-phase commit

MPI-SWS 31

Message Passing in Barrelfish
» in general: common interface for efficient hardware-specific

implementations

» e.g., use network on chip (Noc) in manycore chips (from
Tilera, Adapteva, Kalray…)

» on Intel/AMD x86: use cache-coherent shared memory as
message channel

» carefully work with cache-coherency protocol

» two cache-coherency interactions per message

» receiver monitors last word of expected message

» sender invalidates when starting to write cache line

» receiver fetches when message complete

MPI-SWS 32

Multikernel Discussion
Advantages:

» scales by default and transparently handles heterogeneity

» cross-core interaction is explicit and hence easier to debug

» can pick & choose kernels for specific workloads (hard real-
time, soft real-time, max. throughput, etc.)

Challenges:

» it scales, but distributed agreement comes with overheads

» is it easier or more difficult to develop?

» is cache-coherence really a limiting factor?

MPI-SWS 33

