Multicore
OS Lecture 22

UdS/TUKL WS 2015

SSSSSSS

Multicore

2001: IBM POWER4, dual-core PowerPC
2006: Intel Core Duo, dual-core x86

2007: Tilera TILEG4, 64 cores

2012: Kalray MPPA-256, 1 socket, 256 cores

2015: Intel Xeon E7
8 sockets x 18 cores/socket x 2 HW threads/core = 288
hardware threads (HTs) to be scheduled by OS!

2013: Oracle SPARC T5
8 sockets x 16 cores/socket x 8 HW threads/core = 1024 HTs!

MPI-SWS

Why?

> power wall: can’t increase frequency without
chips running too hot / costing too much

> memory wall: RAM outpaced by processor
speeds, cannot get data and instructions to
processor quickly enough — caches

> ILP (= instruction-level parallelism) wall: can’t
keep pipeline busy w/ single instruction stream

> These trends are unlikely to change in the
foreseeable future.

MPI-SWS

Challenges

1. How to “find” and expose parallelism in
applications<

2. How to efficiently schedule and load-balance
that many cores/HTs?

3. How to synchronize efficiently across that many
cores/HTs?

4. How to synchronize correctly?

MPI-SWS

Memory Hierarchy

> UMA: uniform memory architecture

> NUMA: non-uniform memory architecture
>> cache consistency

> cache-line bouncing

> false sharing

> cache interference

MPI-SWS

Memory Consistency

> sequential consistency = serializability
execution equiv. to some sequential interleaving of instr.

> relaxed memory models
> reorder writes w.r.t. program order
> reorder reads w.r.t. program order
> reorder reads and writes

> relaxed atomicity: some processors read some
writes early

> memory barrier [fence: enforce program order

MPI-SWS

Scalability and
Synchronization

SSSSSSS

Kernel Scalability Basics

>>

>>

>>

>>

>>

>>

>>

coarse-grained locking = fine-grained locking
ensure data structures are cache-line-aligned
minimize access to shared data structures

use partitioned per-processor data structures
maintain cache affinity

cache partitioning / coloring

employ efficient & scalable synchronization
primitives...

MPI-SWS

Non-Scalable Ticket Spin Lock

volatile unsigned int arrival_counter = 0, now_serving = 0;

void lock() f{

unsigned int ticket;
ticket = atomic_fetch_and_inc(&arrival_counter);

while (ticket != now_serving)
>
memoxy_barrier();

}
void unlock() {

memory_barriexr();

now_serving++;

}

MPI-SWS

Scalable MCS Queue Lock

J. Mellor-Crummey & M. Scott. Algorithms for scalable

synchronization on shared-memory multiprocessors. ACM Transactions
on Computer Systems, pages 21—65, Volume 9, Number 1, 1991

struct qnode {

volatile struct gnode* next;

volatile bool blocked;
}

struct gnodex last = NULL;

> CAS — compare-and-swap: given a memory location, an expected
value, and a new value, store the new value only if the expected
value matches the actual value

MPI-SWS

10

Scalable MCS Queue Lock — Lock Operation

void lock(struct qnodex self) {

struct qnodex prev;

self->next = NULL;

prev = atomic_fetch_and_store(&last, self);

if (prev != NULL) {
self->blocked = true;
memory_barriex();
prev->next = self;
while (self->blocked)

>
} else memoxry_barriex();

}

MPI-SWS

11

Scalable MCS Queue Lock — Unlock Operation

void unlock(struct gnodex self) {
memoxry_barrier();
if (self->next == NULL) {
if (compare_and_swap(&last, self, NULL))
returns
else
while (self->next == NULL)
>
}

self->next->blocked = falses

}

MPI-SWS 12

Read-Copy Update (RCU)

>>

>>

>>

>>

>>

Problem with reader-writer locks: every readside critical
section requires two writes (to the lock itself)!

RCU: make (very frequent) reads extremely cheap, at the
expense of (infrequent) writers.

[dea: use execution history to synchronize.

Shared pointer to current version of shared object;
dereferenced exactly once by each reader.

Instead of updating in place, writer makes a copy, updates
the copy, publishes the copy by exchanging current-version
pointer, and then (later) garbage-collects the old version.

MPI-SWS 13

Simple RCU Implementation

Processor 1n quiescent state: not using RCU-
protected resource.

Grace period: every processor i1s guaranteed to have
been 1n quiescent state at least once.
— garbage-collect after grace period ends

> readers: execute non-preemptively

>> Writer: grace period ends after every processor has
context-switched at least once

> multiple writers: serialize with spin lock

MPI-SWS 14

Non-Blocking Synchronization

[dea: synchronize, but without mutual exclusion.

>>

>>

>>

>>

>>

Design data structures to allow safe concurrent access.
No waiting, no possibility of deadlock.

Wait-free: process is guaranteed to progress in bounded
number of steps, no matter what.

Lock-free: if two or more processes conflict, at least one
is guaranteed to progress, the other(s) may have to retry.

Obstruction-free: progress is guaranteed only in absence
of contention; all conflicting processes may have to retry.

MPI-SWS 15

Example: Wait-free Bounded Buffer

char buffex[BUF_SIZE]; int head = 03 int tail = o3

Assumption: one producer, one consumer.

MPI-SWS 16

Example: Wait-free Bounded Buffer

char buffex[BUF_SIZE]; int head = 03 int tail = 03
bool TryProduce(chaxr item) {
if ((tail + 1) % BUF_SIZE == head)
return false;
else {
buffex[tail] = items
tail = (tail + 1) % BUF_SIZE;

return true;

}

MPI-SWS 17

Example: Wait-free Bounded Buffer

bool TxyConsume(char xitem) {
if (tail == head)
return false;
else {
¥item = buffer[head];
head = (head + 1) % BUF_SIZE;

return true;

}

MPI-SWS 18

Example: Lock-free Queue

struct QElem {

struct Item xitem;

struct QElem *next;

}
struct QElem xlast

NULL;

Assumption: any number of threads.

> 1d1 — load-linked, load a value from memory and start
monitoring location that was read

> stc — store—-conditional, store a value to a monitored
location, but only if it hasn’t been written since 1d1

MPI-SWS 19

Example: Lock-free Queue

struct QElem {
struct Item x*item;
struct QElem xnext;
}
struct QElem xlast = NULL;
void AppendToTail(struct Item x%item) {
malloc(sizeof(QElem))3

struct QElem xnew
new->1item = item;
do {

new->next = 1d1l(&last);
} while(!stc(&last, new));

}

MPI-SWS 20

Example: Lock-free Queue

struct QElem xlast = NULL3

bool ItemIsInList(Item *item) {
struct QElem xcurrent = last;
while (current != NULL) {
if (current->item == item)
return true;
current = current->next;

}

return false;

}

MPI-SWS 21

Example: Lock-free Queue

struct QElem *RemoveTail() {
do {
struct QElem xcurrent = 1ldl(&last);
if (current == NULL)
return NULL;
} while(!stc(&last, current->next));

return current;

MPI-SWS 22

Universal Lock-free Object

struct any_object { ... }3

struct any_object xcurrent_version;
void do_update() {

227
}

Like RCU: make a private copy, update copy, then
publish with CAS.

MPI-SWS

Universal Lock-free Object

struct any_object { ... };
struct any_object *current_version;
void do_update() {
struct any_object *cpy = alloc_object();
do {
struct any_object *0ld = current_version;
memcpy(cpy, old, sizeof(*o0ld));
cpy->some_field = ..

} while (!CAS(¤t_version, old, cpy));

MPI-SWS 24

The ABA Problem

> When is it safe to reclaim or reuse old object?

> ABA problem: CAS succeeds despite interleaved
updates if expected value happens to be restored

> “same value” (CAS) vs. “no writes” (1d1/stc)

> limited solution: tag bits / version counter
(— CAS2, “double CAS”)

> general solution: limited concurrent GC
(= e.g., hazard pointers)

MPI-SWS

25

OS Design for
Multicore

SSSSSSS

Multikernels

Idea: a multicore kernel without shared memory.
Motivation:

>> cache coherency can be a scalability limit: how many
cores/sockets can you keep coherent without slowing
down the entire systems¢

> core specialization will increase hardware heterogeneity:
fast cores, slow cores, I/O cores, GPUs, integer cores...

> platform diversity: run on everything from smartphones
to supercomputers; difficult to optimize for any platform

MPI-SWS 27

Multikernel Design Principles

1. Make all inter-core communication explicit.

2. Make OS structure hardware—-neutral.
(On top of a shallow HW-specific layer.)

3. View state as replicated instead of shared.

MPI-SWS 28

Multikernel Design (Bauman et al., 2009)

App App App App

D Y IS R S
I
OS node OS node OS node OS node | 1
Agreement : /I l\ |
algorithms 1 State State State Async messages State :
: replica replica replica \] [/ replica || ,
I I
Arch-specific | '
S e I I S —
Heterogeneous o o
cores x86 x64 ARM GPU

< Interconnect >

MPI-SWS 29

Barrelfish (Bauman et al., 2009)

App App App App

User I ------------------------------- -I

1 Monitor Monitor Monitor

Spa ce I -------------- ﬁ- -U 5 P-C- Il . % ------- I
Kernel CPU CPU == CPU
space: driver driver Send IPI driver
x86-64 x86-64 x86-64

Hardware: oo,/ apic CPU/APIC <C - GPU/APIC
MMU MMU dacne-conerence, MMU

Interrupts

Barrelfish is the multikernel research OS that
popularized the 1dea.

MPI-SWS 30

Monitors in Barrelfish

> keep track of OS state (memory allocation
tables, capabilities/access rights, etc.)

>> each monitor has a local copy: local operations
are extremely fast

> Global operations are synchronized explicitly
among all monitors with agreement protocols

> adopt techniques from distributed systems

> e.g., two-phase commit

MPI-SWS 31

Message Passing in Barrelfish

> 1n general: common interface for efficient hardware-specific
Implementations

> e.g. use network on chip (Noc) in manycore chips (from
Tilera, Adapteva, Kalray...)

> on Intel/AMD x86: use cache-coherent shared memory as
message channel

> carefully work with cache-coherency protocol
> two cache-coherency interactions per message
> receiver monitors last word of expected message
> sender invalidates when starting to write cache line

> receiver fetches when message complete

MPI-SWS 32

Multikernel Discussion

Advantages:

> scales by default and transparently handles heterogeneity
>> Cross-—core interaction is explicit and hence easier to debug

> can pick & choose kernels for specific workloads (hard real-
time, soft real-time, max. throughput, etc.)

Challenges:

> 1t scales, but distributed agreement comes with overheads
> is it easier or more difficult to develop?

>> is cache-coherence really a limiting factor?

MPI-SWS 33

