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Multicore

2001: IBM POWER4, dual-core PowerPC
2006: Intel Core Duo, dual-core x86

2007: Tilera TILEG4, 64 cores

2012: Kalray MPPA-256, 1 socket, 256 cores

2015: Intel Xeon E7
8 sockets x 18 cores/socket x 2 HW threads/core = 288
hardware threads (HTs) to be scheduled by OS!

2013: Oracle SPARC T5
8 sockets x 16 cores/socket x 8 HW threads/core = 1024 HTs!
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Why?

> power wall: can’t increase frequency without
chips running too hot / costing too much

> memory wall: RAM outpaced by processor
speeds, cannot get data and instructions to
processor quickly enough — caches

> ILP (= instruction-level parallelism) wall: can’t
keep pipeline busy w/ single instruction stream

> These trends are unlikely to change in the
foreseeable future.
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Challenges

1. How to “find” and expose parallelism in
applications<

2. How to efficiently schedule and load-balance
that many cores/HTs?

3. How to synchronize efficiently across that many
cores/HTs?

4. How to synchronize correctly?
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Memory Hierarchy

> UMA: uniform memory architecture

> NUMA: non-uniform memory architecture
>> cache consistency

> cache-line bouncing

> false sharing

> cache interference
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Memory Consistency

> sequential consistency = serializability
execution equiv. to some sequential interleaving of instr.

> relaxed memory models
> reorder writes w.r.t. program order
> reorder reads w.r.t. program order
> reorder reads and writes

> relaxed atomicity: some processors read some
writes early

> memory barrier [ fence: enforce program order
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Scalability and
Synchronization
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Kernel Scalability Basics

>>

>>

>>

>>

>>

>>

>>

coarse-grained locking = fine-grained locking
ensure data structures are cache-line-aligned
minimize access to shared data structures

use partitioned per-processor data structures
maintain cache affinity

cache partitioning / coloring

employ efficient & scalable synchronization
primitives...
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Non-Scalable Ticket Spin Lock

volatile unsigned int arrival_counter = 0, now_serving = 0;

void lock() f{

unsigned int ticket;
ticket = atomic_fetch_and_inc(&arrival_counter);

while (ticket != now_serving)
>
memoxy_barrier();

}
void unlock() {

memory_barriexr();

now_serving++;

}
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Scalable MCS Queue Lock

J. Mellor-Crummey & M. Scott. Algorithms for scalable

synchronization on shared-memory multiprocessors. ACM Transactions
on Computer Systems, pages 21—65, Volume 9, Number 1, 1991

struct qnode {

volatile struct gnode* next;

volatile bool blocked;
}

struct gnodex last = NULL;

> CAS — compare-and-swap: given a memory location, an expected
value, and a new value, store the new value only if the expected
value matches the actual value
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Scalable MCS Queue Lock — Lock Operation

void lock(struct qnodex self) {

struct qnodex prev;

self->next = NULL;

prev = atomic_fetch_and_store(&last, self);

if (prev != NULL) {
self->blocked = true;
memory_barriex();
prev->next = self;
while (self->blocked)

>
} else memoxry_barriex();

}

MPI-SWS

11



Scalable MCS Queue Lock — Unlock Operation

void unlock(struct gnodex self) {
memoxry_barrier();
if (self->next == NULL) {
if (compare_and_swap(&last, self, NULL))
returns
else
while (self->next == NULL)
>
}

self->next->blocked = falses

}
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Read-Copy Update (RCU)

>>

>>

>>

>>

>>

Problem with reader-writer locks: every readside critical
section requires two writes (to the lock itself)!

RCU: make (very frequent) reads extremely cheap, at the
expense of (infrequent) writers.

[dea: use execution history to synchronize.

Shared pointer to current version of shared object;
dereferenced exactly once by each reader.

Instead of updating in place, writer makes a copy, updates
the copy, publishes the copy by exchanging current-version
pointer, and then (later) garbage-collects the old version.
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Simple RCU Implementation

Processor 1n quiescent state: not using RCU-
protected resource.

Grace period: every processor i1s guaranteed to have
been 1n quiescent state at least once.
— garbage-collect after grace period ends

> readers: execute non-preemptively

>> Writer: grace period ends after every processor has
context-switched at least once

> multiple writers: serialize with spin lock
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Non-Blocking Synchronization

[dea: synchronize, but without mutual exclusion.

>>

>>

>>

>>

>>

Design data structures to allow safe concurrent access.
No waiting, no possibility of deadlock.

Wait-free: process is guaranteed to progress in bounded
number of steps, no matter what.

Lock-free: if two or more processes conflict, at least one
is guaranteed to progress, the other(s) may have to retry.

Obstruction-free: progress is guaranteed only in absence
of contention; all conflicting processes may have to retry.
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Example: Wait-free Bounded Buffer

char buffex[BUF_SIZE]; int head = 03 int tail = o3

Assumption: one producer, one consumer.
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Example: Wait-free Bounded Buffer

char buffex[BUF_SIZE]; int head = 03 int tail = 03
bool TryProduce(chaxr item) {
if ((tail + 1) % BUF_SIZE == head)
return false;
else {
buffex[tail] = items
tail = (tail + 1) % BUF_SIZE;

return true;

}
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Example: Wait-free Bounded Buffer

bool TxyConsume(char xitem) {
if (tail == head)
return false;
else {
¥item = buffer[head];
head = (head + 1) % BUF_SIZE;

return true;

}
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Example: Lock-free Queue

struct QElem {

struct Item xitem;

struct QElem *next;

}
struct QElem xlast

NULL;

Assumption: any number of threads.

> 1d1 — load-linked, load a value from memory and start
monitoring location that was read

> stc — store—-conditional, store a value to a monitored
location, but only if it hasn’t been written since 1d1
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Example: Lock-free Queue

struct QElem {
struct Item x*item;
struct QElem xnext;
}
struct QElem xlast = NULL;
void AppendToTail(struct Item x%item) {
malloc(sizeof(QElem))3

struct QElem xnew
new->1item = item;
do {

new->next = 1d1l(&last);
} while(!stc(&last, new));

}

MPI-SWS 20



Example: Lock-free Queue

struct QElem xlast = NULL3

bool ItemIsInList(Item *item) {
struct QElem xcurrent = last;
while (current != NULL) {
if (current->item == item)
return true;
current = current->next;

}

return false;

}
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Example: Lock-free Queue

struct QElem *RemoveTail() {
do {
struct QElem xcurrent = 1ldl(&last);
if (current == NULL)
return NULL;
} while(!stc(&last, current->next));

return current;
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Universal Lock-free Object

struct any_object { ... }3

struct any_object xcurrent_version;
void do_update() {

227
}

Like RCU: make a private copy, update copy, then
publish with CAS.
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Universal Lock-free Object

struct any_object { ... };
struct any_object *current_version;
void do_update() {
struct any_object *cpy = alloc_object();
do {
struct any_object *0ld = current_version;
memcpy(cpy, old, sizeof(*o0ld));
cpy->some_field = ..

} while (!CAS(&current_version, old, cpy));
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The ABA Problem

> When is it safe to reclaim or reuse old object?

> ABA problem: CAS succeeds despite interleaved
updates if expected value happens to be restored

> “same value” (CAS) vs. “no writes” (1d1/stc)

> limited solution: tag bits / version counter
(— CAS2, “double CAS”)

> general solution: limited concurrent GC
(= e.g., hazard pointers)
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OS Design for
Multicore
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Multikernels

Idea: a multicore kernel without shared memory.
Motivation:

>> cache coherency can be a scalability limit: how many
cores/sockets can you keep coherent without slowing
down the entire systems¢

> core specialization will increase hardware heterogeneity:
fast cores, slow cores, I/O cores, GPUs, integer cores...

> platform diversity: run on everything from smartphones
to supercomputers; difficult to optimize for any platform
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Multikernel Design Principles

1. Make all inter-core communication explicit.

2. Make OS structure hardware—-neutral.
(On top of a shallow HW-specific layer.)

3. View state as replicated instead of shared.
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Multikernel Design (Bauman et al., 2009)
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Barrelfish (Bauman et al., 2009)
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Barrelfish is the multikernel research OS that
popularized the 1dea.

MPI-SWS 30



Monitors in Barrelfish

> keep track of OS state (memory allocation
tables, capabilities/access rights, etc.)

>> each monitor has a local copy: local operations
are extremely fast

> Global operations are synchronized explicitly
among all monitors with agreement protocols

> adopt techniques from distributed systems

> e.g., two-phase commit
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Message Passing in Barrelfish

> 1n general: common interface for efficient hardware-specific
Implementations

> e.g. use network on chip (Noc) in manycore chips (from
Tilera, Adapteva, Kalray...)

> on Intel/AMD x86: use cache-coherent shared memory as
message channel

> carefully work with cache-coherency protocol
> two cache-coherency interactions per message
> receiver monitors last word of expected message
> sender invalidates when starting to write cache line

> receiver fetches when message complete
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Multikernel Discussion

Advantages:

> scales by default and transparently handles heterogeneity
>> Cross-—core interaction is explicit and hence easier to debug

> can pick & choose kernels for specific workloads (hard real-
time, soft real-time, max. throughput, etc.)

Challenges:

> 1t scales, but distributed agreement comes with overheads
> is it easier or more difficult to develop?

>> is cache-coherence really a limiting factor?
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