
Synchronization
OS Lecture 3
UdS/TUKL WS 2015

MPI-SWS 1

Announcements
1. First assignment out today. Start working on it early.

» http://courses.mpi-sws.org/os-ws15/

2. Send email to course mailing list if you are still
looking for a partner

3. Slides available on course homepage a day or so after
lecture.

» This does not replace attendance. Not all
discussed topics will be reflected in the slides.

» Take your own notes and ask questions.

MPI-SWS 2

http://courses.mpi-sws.org/os-ws15/

Review: Processes
» sphere of isolation (protection domain) and computation

in progress (thread)

» independent processes

» perfectly isolated

» deterministic

» cooperating processes

» possibly non-deterministic

» require proper synchronization

» Why cooperate?

MPI-SWS 3

Cooperating Processes
How can processes cooperate?

MPI-SWS 4

Cooperating Processes
» through shared files

» explicitly via communication channels

» send() / receive() — message passing

» read() / write() — pipelines

» Ex: grep bar /tmp/foo | sort -n | head 12

» share memory

» some, but not all memory: shared segments (e.g., mmap())

» all memory: multithreaded process

MPI-SWS 5

Review: Threads
» multithreaded processes: can have more than one

computation in progress in a sphere of isolation

» absolutely no isolation between threads of the
same process

» each thread has its own program counter (PC),
register contents, and stack

» Why have threads?

» Why not just communication channels?

» Why not just shared memory segments?

MPI-SWS 6

Review: Race Condition
Processes “racing” to carry out their conflicting operation.
Example:

A = 0x1 || A = 0x10000

Outcome depends on…

» interleaving of operations and relative speed of
processes

» on what exactly constitutes an atomic operation

While there can be benign races, a race condition is typically
indicative of buggy or missing synchronization.

MPI-SWS 7

Review: Atomic Operations
» Cannot be interrupted / interleaved “in the

middle” of execution.

» Fixed set of primitive atomic ops provided by
hardware.

» On a uniprocessor, anything between two
interrupts is atomic: ➞ interrupts masked /
disabled = atomic.

» For now, suppose we have only atomic reads
and atomic writes.

MPI-SWS 8

The “too much milk” problem

Motivational example to illustrate challenges of proper
synchronization.

Setting:

» You and a roommate (two processes). Buy new milk (action)
if none left in fridge (condition).

Protocol:

» Whoever notices that there’s no milk left goes shopping.

What could go wrong?

MPI-SWS 9

The “too much milk” problem
 Person A Person B
3:00 Look in fridge. Out of milk.
3:05 Leave for store.
3:10 Arrive at store. Look in fridge. Out of milk.
3:15 Leave store. Leave for store.
3:20 Arrive home, put milk away. Arrive at store.
3:25 Leave store.
3:30 Arrive home. OH, NO!

» What does correct mean?

MPI-SWS 10

Specification
» don’t buy more than one bottle of milk at the same time

» somebody needs to go shopping

Refined:

» at most one person goes shopping at the same time
(➞ mutual exclusion)

» if one person has gone shopping (➞ critical section), the
other should await the outcome

» if there is no milk left, somebody should “eventually”
go shopping (➞ progress)

MPI-SWS 11

Terminology
Mutual exclusion / mutex: a mechanism that
ensures that, from a set of operations, at most one
happens at the same time (all others are excluded)

Critical section: a section of code (or a collection
of operations) which only one process may be
executing at the same time

How accomplished?

MPI-SWS 12

Locks
A common way to realize mutual exclusion is to
use a locking mechanism:

» real-world equivalent: leave a note ”hey, I’m
getting milk; will be back soon”

» lock() before a critical section (= leave a note)

» unlock() after a critical section (= remove note)

» must wait if locked (= don’t shop if note on fridge)

MPI-SWS 13

Computerized Too Much Milk — Attempt 1

Idea: before shopping, leave a note on the refrigerator
(= lock the shopping operation)

MPI-SWS 14

Computerized Too Much Milk — Attempt 1

 Processes A & B:
1: if (NoMilk) {
2: if (NoNote) {
3: Leave Note;
4: Buy Milk;
5: Remove Note;
6: }
7: }

» Does this work?
MPI-SWS 15

Attempt 1 — Why it fails
❗ Trace: A1-B1-A2-B2-A3-B3-…

» We have made the problem less likely, but we
haven’t fixed it: ➞ typical of broken synchronization

» Root cause: A and B observe exactly the same state
(no milk, no note), so reach the same conclusion

» Why does attempt 1 work for humans, but not
computers?

» Can we fix it by leaving the note first? Before
checking for milk?

MPI-SWS 16

Computerized Too Much Milk — Attempt 2

Idea: break the symmetry

» A buys if there is no note

» B buys if there is a note

Effectively, take turns to buy milk and only go if
it’s your turn.

MPI-SWS 17

Computerized Too Much Milk — Attempt 2

 Processes A: Process B:
1: if (NoNote) { if (Note) {
2: if (NoMilk) { if (NoMilk) {
3: Buy Milk; Buy Milk;
4: } }
5: Leave Note; Remove Note;
6: } }

» Does this work?

MPI-SWS 18

Claim: at most one process will buy milk.

How can you tell?

MPI-SWS 19

Claim: at most one process will buy milk.

How can you tell? Prove it!

A proof sketch:

1. A note will be left only by A, and only if there isn’t already a
note.

2. A note will be removed only by B, and only if there is a note.

3. Thus, there is either one note, or no note.

4. If there is a note, only B will buy milk.

5. If there is not a note, only A will buy milk.

6. Thus, only one process will buy milk.

MPI-SWS 20

But does it really work?
» What if process B goes on vacation? (= doesn’t

run for some time, e.g., blocked on I/O)

» Process A will not be able to buy milk more
than once. ➞ starvation!

» Root cause: for A, no difference between ”you’re
buying” and ”not my turn”

MPI-SWS 21

Computerized Too Much Milk — Attempt 3

Idea: use 2 separate notes to tell apart who is buying

MPI-SWS 22

Computerized Too Much Milk — Attempt 3

Processes A: Process B:
1: Leave NoteA; Leave NoteB;
2: if (NoNoteB) { if (NoNoteA) {
3: if (NoMilk) { if (NoMilk) {
4: Buy Milk; Buy Milk;
5: } }
6: } }
7: Remove NoteA; Remove NoteB;

» Does this work?

MPI-SWS 23

Attempt 3 — Does it work?
» at most one process will buy milk ✔

» if one process “goes on vacation,” the other
will still buy milk ✔

❗ Trace: A1-B1-A2-B2-A7-B7

» If both processes leave note at the same time:
nobody will buy milk. ➞ starvation!

MPI-SWS 24

Computerized Too Much Milk — Attempt 4

Idea: explicit tie-break rule

» process B buys the milk if both try

MPI-SWS 25

Computerized Too Much Milk — Attempt 4

Processes A: Process B:
1: Leave NoteA; Leave NoteB;
2: if (NoNoteB) { while (NoteA) DoNothing;
3: if (NoMilk) { if (NoMilk) {
4: Buy Milk; Buy Milk;
5: } }
6: } Remove NoteB;
7: Remove NoteA;

» Does this work?

MPI-SWS 26

Attempt 4 — Does it work?
Finally, yes!

» at most one process will buy milk ✔

» somebody will buy milk in all cases ✔

But:

» asymmetric & complex code

» Difficult to extend: what happens if a third roommate joins?
What happens if there are multiple fridges & a pin board?

» Process B is busy-waiting (line 2), which wastes resources
(especially on a uniprocessor).

MPI-SWS 27

The OS Approach: Abstraction

Problem:

» Piecing together a synchronization solution
from low-level hardware primitives (like
atomic read/write) is too cumbersome and
error-prone.

Solution:

» A higher-level abstraction at the OS level: semaphores

» Flexible, portable semantics, easier to reason about

MPI-SWS 28

Higher-Level Synchronization Primitive: Goals

What are desirable properties for a general, high-level
synchronization primitives?

MPI-SWS 29

Higher-Level Synchronization Primitive: Goals

» Correctness: allow at most one process in critical
section at a time

» Progress: processes must be able to stall (“go on
vacation”) for arbitrary amounts of time outside
critical section

» Fairness: if multiple processes are waiting, don’t let
anyone wait “forever”

» Efficiency: don’t waste large amounts of resources
on waiting processes

» Simplicity: should be easy to use

MPI-SWS 30

Semaphores
A semaphore is a counter with two atomic operations:

» P(): wait for counter to exceed zero, then atomically
decrement by 1

» after operation returns, we know counter was
positive

» V(): increment counter by 1

» allows exactly one, already waiting or future, P()
operation to proceed

Proposed by Edsger Dijkstra in 1962.

MPI-SWS 31

MPI-SWS 32

Semaphore Operation Names
» P(): Dutch proberen (to test), passeren (to pass), or pakken

(to grab)

» Common alternative: wait()

» Linux kernel: down()

» Java: acquire()

» V(): Dutch verhogen (to increase) or vrijgave (release)

» Common alternative: signal()

» Linux kernel: up()

» Java: release()

MPI-SWS 33

Computerized Too Much Milk — Attempt 5

Idea: use a semaphore named OKToBuyMilk

MPI-SWS 34

Computerized Too Much Milk — Attempt 5

 Processes A & B:
1: P(OKToBuyMilk);
2: if (NoMilk) {
3: Buy Milk;
4: }
5: V(OKToBuyMilk);

» Does this work? What is right right initial value
for OKToBuyMilk?

MPI-SWS 35

Binary semaphore
Important special case: a binary semaphore that
takes on only the values zero and one can be used
to provide mutual exclusion.

» initialize to one

» lock() = P()
➞ counter becomes zero, no other P() can pass

» unlock() = V()
➞ lock released, next critical section can start

MPI-SWS 36

Proper use of (Binary) Semaphores

What to do and what to avoid when dealing with locks
or semaphores?

MPI-SWS 37

Proper use of (Binary) Semaphores

» Always lock with P() before manipulating shared data

» Always unlock with V() after manipulating shared
data

» Do not lock again if already locked (➞ requires
reentrant locks)

» Do not unlock if it was not locked by the same process

» but special cases exists where it’s ok to break this
rule — can you think of an example?

» Keep critical sections as short as possible.

MPI-SWS 38

Condition Synchronization
» Semaphores can be used for more than just

mutual exclusion

» Condition synchronization: permit processes to
wait for events to occur without wasting
resources (busy-waiting).

» Also called counting semaphores: opposite of
binary semaphores (i.e, regular semaphores that
can take on any value).

» Typically, one counting semaphore per event type

MPI-SWS 39

Producer & Consumer Example

Setting:

» one process, the producer, creates data items

» another process, the consumer, consumes data
times

» shared, limited-size pool of buffers to hold
produced, but not yet consumed data items

What are the requirements?

MPI-SWS 40

Producer & Consumer Example

Requirements:

» consumer must wait for data to be available
➞ wait for “data produced” event

» producer must wait for buffer space to be
available
➞ wait for “buffer emptied” event

» at most one process must manipulate buffer at
the same time
➞ mutual exclusion

MPI-SWS 41

Producer & Consumer Example

How many counting and binary semaphores do we
need?

What are their initial values?

Assume: we have space for numBuffers data items.

MPI-SWS 42

Producer & Consumer Example

Two counting semaphores:
 - buffer_emptied, initialized to numBuffers
 - buffer_filled, initialized to zero

One binary semaphore:
 - buffer_pool_mutex, initialized to one

MPI-SWS 43

Producer Process
Idea: wait for space, get empty buffer, produce, make
full buffer available

MPI-SWS 44

Producer Process
P(buffer_emptied);
P(buffer_pool_mutex);
get buffer from pool of empty buffers;
V(buffer_pool_mutex);
produce data in buffer;
P(buffer_pool_mutex);
add buffer to pool of full buffers;
V(buffer_pool_mutex);
V(buffer_filled);

MPI-SWS 45

Consumer Process
Idea: wait for data, get full buffer, consume, make
empty buffer available

MPI-SWS 46

Consumer Process
P(buffer_filled);
P(buffer_pool_mutex);
get buffer from pool of full buffers;
V(buffer_pool_mutex);
process data in buffer;
P(buffer_pool_mutex);
add buffer to pool of empty buffers;
V(buffer_pool_mutex);
V(buffer_emptied);

MPI-SWS 47

Discussion
» Why does the producer P(buffer_emptied), but

V(buffer_filled)?

» What changes are required to add a second consumer?

» Could we have separate binary semaphores
empty_buffer_mutex and full_buffer_mutex?

» Can we change the order of the V() operations? (i.e.,
V(buffer_pool_mutex) after V(buffer_emptied)?)

» Can we change the order of the P() operations? (i.e,
P(buffer_pool_mutex) before P(buffer_filled)?)

MPI-SWS 48

Deadlock
Or “deadly embrace” [Dijkstra].

» Cycle in the wait-for graph.

» A is waiting for B, B is waiting for C, …, Y is waiting for Z,
and Z is waiting for A

To avoid deadlock, always acquire nested locks in the same
order. Examples:

» P(X); P(Y); V(Y); V(X) || P(Y); P(X); V(X); V(Y) will
deadlock.

» P(X); P(Y); V(Y); V(X) || P(X); P(Y); V(Y); V(X) is fine.

MPI-SWS 49

Another Synchronization Example

Setting:

» a shared database

» multiple readers may access database
simultaneously

» each writer requires exclusive access

Which constraints do we need to enforce?

MPI-SWS 50

Shared Database — Specification

» writers can only proceed if there are no active
readers or writers

» readers can only proceed if there are no active
or waiting writers

MPI-SWS 51

Shared Database — Variables

Four (non-atomic) state variables:

» AR & WR: number of active & waiting readers

» AW & WW: number of active & waiting writers

Semaphores:

» protect state variables with semaphore Mutex

» writers use semaphore OKToWrite to wait

» readers use semaphore OKToRead to wait

MPI-SWS 52

Initial Values
AR = AW = WR = WW = 0

Mutex = 1

OKToWrite = 0

OKToRead = 0

MPI-SWS 53

Reader Process
» readers can only proceed if there are no active or

waiting writers

Idea:

1. first, check for any writers

2. start reading if none are present; otherwise wait

3. don’t forget to let (later-arriving) writers know a read is in
progress

4. the last reader to leave must notify a waiting writer (if any)

MPI-SWS 54

Reader Process
Reader entry: Reader exit:
P(Mutex); […finish reading DB…]
if (AW + WW == 0) { P(Mutex);
 V(OKToRead); AR = AR - 1;
 AR = AR + 1; if (AR == 0 && WW > 0) {
} else { V(OKToWrite);
 WR = WR + 1; AW = AW + 1;
} WW = WW - 1;
V(Mutex); }
P(OKToRead); V(Mutex);
[…start reading DB…]

MPI-SWS 55

Some Examples
1. Single reader enters and leaves system

2. Two readers enter and leave system

MPI-SWS 56

Writer Process
» writers can only proceed if there are no active

readers or writers

Idea:

1. first, check for any writers or readers

2. start writing if nobody else is present; otherwise wait

3. when leaving, unblock next writer…

4. …or all readers if no writer is waiting

MPI-SWS 57

Writer Process
Writer entry: Writer exit:
P(Mutex); […finish writing DB…]
if (AW + AR + WW == 0) { P(Mutex);
 V(OKToWrite); AW = AW - 1;
 AW = AW + 1; if (WW > 0) {
} else { V(OKToWrite);
 WW = WW + 1; AW = AW + 1;
} WW = WW - 1;
V(Mutex); } else while (WR > 0) {
P(OKToWrite); V(OKToRead);
[…start writing DB…] AR = AR + 1;
 WR = WR - 1;
 }
 V(Mutex);

MPI-SWS 58

More Examples
1. Single writer W1 enters and leaves system

2. Two readers R1, R2 enter system

3. Writer W2 enters system and waits

4. Reader R3 enters system and waits

5. Readers R1, R2 leave system, writer W2
continues

6. Writer W2 leaves system, reader R3 continues
and leaves

MPI-SWS 59

Discussion
» Is the “+ WW” necessary in the writer entry

check?

» If there are both readers and writers, who gets
priority? Always?

» Which values do AW, OKToRead, and OKToWrite
assume?

» Is the first writer to execute P(Mutex)
guaranteed to be the first writer to access the
DB?

MPI-SWS 60

Semaphore
Implementation
» Semaphores are a powerful, higher-level

abstraction…

» … but are not provided by hardware.

» The OS must provide a semaphore
implementation based on the available atomic
primitive operation provided by hardware.

MPI-SWS 61

How to Implement Semaphores

» Could use atomic reads and writes, like in too-
much-milk example…

» …but that leads to busy-waiting and inelegant
solution.

MPI-SWS 62

Semaphore System Calls
» Instead, realize P() and V() as system calls in the

kernel.

» Block (or suspend) threads that must wait in P() by

» setting their state to WAITING and

» removing them from the ready queue.

» Unblock (or resume) waiting threads in V() by

» setting their state to READY and

» adding them to the ready queue.

MPI-SWS 63

Semaphore Sketch
typedef struct {
 int count;
 queue q;
} Semaphore;

» P(): atomically check count and add process to q if count <= 0;
otherwise decrement count

» V(): atomically resume process in q (if any);
otherwise increment count

» But access to the struct is not atomic…

» …how to make sure that operations are effectively atomic?

MPI-SWS 64

Uniprocessor Solution
Idea: disable interrupts to avoid interleaving “in the
middle” of a P() or V() operation.

MPI-SWS 65

Uniprocessor Solution: P()
void P(Semaphore &s) {
 Disable interrupts;
 if (s->count > 0) {
 s->count -= 1;
 } else {
 set_state(current_thread, WAITING);
 remove_from_ready_queue(current_thread);
 add_to_queue(&s->q, current_thread);
 schedule(); /* context-switch away */
 }
 Enable interrupts;
}

MPI-SWS 66

Uniprocessor Solution: V()
void V(Semaphore &s) {
 Disable interrupts;
 if (isEmpty(&s->q)) {
 s->count += 1;
 } else {
 thread = RemoveFirst(&s->q);
 set_state(thread, READY);
 add_to_ready_queue(thread);
 }
 Enable interrupts;
}

MPI-SWS 67

The Multiprocessor Case
» Why does the previous solution not work on a

multiprocessor?

MPI-SWS 68

The Multiprocessor Case
» Why does the previous solution not work on a

multiprocessor?
➞ Concurrent modification of Semaphore struct

» Must exclude both:

» local interleaving (as on a uniprocessor)

» accesses on remote processors

» Can we just turn off interrupts on all
processors?

MPI-SWS 69

Multiprocessor Approach
1. Turn off interrupts to protect against local

interleaving.

2. Use a flag and busy-waiting to synchronize with
other cores (➞ a spin lock).

» spin_lock(int*) / spin_unlock(int*)

» Wait, isn’t busy-waiting “bad”?

» Why is it ok here?

MPI-SWS 70

Multiprocessor Solution
» Add a spin lock: an int variable to serve as a

“operation is currently in progress” flag.

typedef struct {
 int slock; /* initially 0 */
 int count;
 queue q;
} Semaphore;

MPI-SWS 71

Multiprocessor Solution: P()
void P(Semaphore &s) {
 Disable interrupts;
 spin_lock(&s->slock);
 if (s->count > 0) {
 s->count -= 1;
 spin_unlock(&s->slock);
 } else {
 set_state(current_thread, WAITING);
 remove_from_ready_queue(current_thread);
 add_to_queue(&s->q, current_thread);
 spin_unlock(&s->slock);
 schedule(); /* context-switch away */
 }
 Enable interrupts;
}

MPI-SWS 72

Multiprocessor Solution: V()
void V(Semaphore &s) {
 Disable interrupts;
 spin_lock(&s->slock);
 if (isEmpty(&s->q)) {
 s->count += 1;
 } else {
 thread = RemoveFirst(&s->q);
 set_state(thread, READY);
 add_to_ready_queue(thread);
 }
 spin_unlock(&s->slock);
 Enable interrupts;
}

MPI-SWS 73

How to Implement Spin Locks?

» Most CISC machines provide some sort of atomic read-modify-
write instruction.

» Commonly available: test-and-set (TAS) operation

» always sets variable to one

» returns old value prior to write

» RISC alternative: load-linked (LDL) and store-conditional (STC)
instructions

» LDL establishes link between memory location and processor

» any write to a linked memory location destroys its links

» STC fails if written-to memory location is not linked

MPI-SWS 74

Test-and-Test-and-Set (TTAS) Spin Lock

Idea: busy-wait until old value was zero (= unlocked)

MPI-SWS 75

Test-and-Test-and-Set (TTAS) Spin Lock

Idea: busy-wait until old value was zero (= unlocked)

void spin_lock(int *lock) {
 do {
 while (*lock)
 /*do nothing*/;
 } while (TAS(lock) == 1);
}

void spin_unlock(int *lock) {
 *lock = 0;
}

MPI-SWS 76

LDL-STC Spin Lock
Idea: emulate TAS with LDL-STC

MPI-SWS 77

LDL-STC Spin Lock
Idea: emulate TAS with LDL-STC

int TAS(int *x) {
 do {
 old_value = LDL(x);
 } while (STC(x, 1) == STORE_FAILED);
 return old_value;
}

MPI-SWS 78

Spin Lock Discussion
» A real implementation must worry about compiler

barriers and memory fences
(➞ weak memory consistency).

» A simple TTAS lock ensures no order.

» Starvation possible under heavy contention,
especially on large multicores.

» Polling of shared variable is not at all friendly to
cache-consistency protocol.

» Much better spin locks exist…

MPI-SWS 79

Semaphore Key Points
Two fundamental uses for semaphores (review both!):

» mutual exclusion

» condition synchronization

Semaphores are an example of layering:

» provide powerful abstraction (simple, portable, as
many as needed)

» deal with atomic operations offered by hardware
just once in the OS kernel to implement semaphores

MPI-SWS 80

