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Announcements
1. First assignment out today. Start working on it early.

» http://courses.mpi-sws.org/os-ws15/

2. Send email to course mailing list if you are still 
looking for a partner

3. Slides available on course homepage a day or so after 
lecture.

» This does not replace attendance. Not all 
discussed topics will be reflected in the slides.

» Take your own notes and ask questions.
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Review: Processes
» sphere of isolation (protection domain) and computation 

in progress (thread)

» independent processes

» perfectly isolated

» deterministic

» cooperating processes

» possibly non-deterministic

» require proper synchronization

» Why cooperate?
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Cooperating Processes
How can processes cooperate?
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Cooperating Processes
» through shared files

» explicitly via communication channels

» send() / receive() — message passing

» read() / write() — pipelines

» Ex: grep bar /tmp/foo | sort -n | head 12

» share memory 

» some, but not all memory: shared segments (e.g., mmap())

» all memory: multithreaded process
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Review: Threads
» multithreaded processes: can have more than one 

computation in progress in a sphere of isolation

» absolutely no isolation between threads of the 
same process

» each thread has its own program counter (PC), 
register contents, and stack 

» Why have threads?

» Why not just communication channels?

» Why not just shared memory segments?
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Review: Race Condition
Processes “racing” to carry out their conflicting operation.
Example:

A = 0x1 || A = 0x10000

Outcome depends on…

» interleaving of operations and relative speed of 
processes

» on what exactly constitutes an atomic operation

While there can be benign races, a race condition is typically 
indicative of buggy or missing synchronization.
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Review: Atomic Operations
» Cannot be interrupted / interleaved “in the 

middle” of execution.

» Fixed set of primitive atomic ops provided by 
hardware.

» On a uniprocessor, anything between two 
interrupts is atomic: ➞ interrupts masked / 
disabled = atomic.

» For now, suppose we have only atomic reads 
and atomic writes.
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The “too much milk” problem

Motivational example to illustrate challenges of proper 
synchronization.

Setting:

» You and a roommate (two processes). Buy new milk (action) 
if none left in fridge (condition).

Protocol:

» Whoever notices that there’s no milk left goes shopping.

What could go wrong?
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The “too much milk” problem
     Person A                           Person B
3:00 Look in fridge. Out of milk.
3:05 Leave for store.
3:10 Arrive at store.                   Look in fridge. Out of milk.
3:15 Leave store.                       Leave for store.
3:20 Arrive home, put milk away.        Arrive at store.
3:25                                    Leave store.
3:30                                    Arrive home. OH, NO!

» What does correct mean?
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Specification
» don’t buy more than one bottle of milk at the same time

» somebody needs to go shopping

Refined: 

» at most one person goes shopping at the same time
(➞ mutual exclusion)

» if one person has gone shopping (➞ critical section), the 
other should await the outcome

» if there is no milk left, somebody should “eventually” 
go shopping (➞ progress)
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Terminology
Mutual exclusion / mutex: a mechanism that 
ensures that, from a set of operations, at most one 
happens at the same time (all others are excluded)

Critical section: a section of code (or a collection 
of operations) which only one process may be 
executing at the same time

How accomplished?
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Locks
A common way to realize mutual exclusion is to 
use a locking mechanism:

» real-world equivalent: leave a note ”hey, I’m 
getting milk; will be back soon”

»  lock() before a critical section (= leave a note)

» unlock() after a critical section (= remove note)

» must wait if locked (= don’t shop if note on fridge)
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Computerized Too Much Milk — Attempt 1

Idea: before shopping, leave a note on the refrigerator
(= lock the shopping operation)
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Computerized Too Much Milk — Attempt 1

    Processes A & B:
1:  if (NoMilk) {
2:      if (NoNote) {
3:          Leave Note;
4:          Buy Milk;
5:          Remove Note;
6:      }
7:  }

» Does this work?
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Attempt 1 — Why it fails
❗ Trace: A1-B1-A2-B2-A3-B3-…

» We have made the problem less likely, but we 
haven’t fixed it: ➞ typical of broken synchronization

» Root cause: A and B observe exactly the same state 
(no milk, no note), so reach the same conclusion

» Why does attempt 1 work for humans, but not 
computers?

» Can we fix it by leaving the note first? Before 
checking for milk?
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Computerized Too Much Milk — Attempt 2

Idea: break the symmetry

» A buys if there is no note

» B buys if there is a note

Effectively, take turns to buy milk and only go if 
it’s your turn.
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Computerized Too Much Milk — Attempt 2

    Processes A:                Process B:
1:  if (NoNote) {               if (Note) {
2:      if (NoMilk) {               if (NoMilk) {
3:          Buy Milk;                   Buy Milk;
4:      }                           }
5:      Leave Note;                 Remove Note;
6:  }                           }

» Does this work?
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Claim: at most one process will buy milk.

How can you tell?
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Claim: at most one process will buy milk.

How can you tell? Prove it!

A proof sketch:

1. A note will be left only by A, and only if there isn’t already a 
note. 

2. A note will be removed only by B, and only if there is a note.

3. Thus, there is either one note, or no note.

4. If there is a note, only B will buy milk.

5. If there is not a note, only A will buy milk.

6. Thus, only one process will buy milk.
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But does it really work?
» What if process B goes on vacation? (= doesn’t 

run for some time, e.g., blocked on I/O)

» Process A will not be able to buy milk more 
than once. ➞ starvation!

» Root cause: for A, no difference between ”you’re 
buying” and ”not my turn”
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Computerized Too Much Milk — Attempt 3

Idea: use 2 separate notes to tell apart who is buying
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Computerized Too Much Milk — Attempt 3

Processes A:                    Process B:
1:  Leave NoteA;                Leave NoteB;     
2:  if (NoNoteB) {              if (NoNoteA) {
3:      if (NoMilk) {               if (NoMilk) {
4:          Buy Milk;                   Buy Milk; 
5:      }                           }            
6:  }                           }    
7:  Remove NoteA;               Remove NoteB;

» Does this work?
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Attempt 3 — Does it work?
» at most one process will buy milk ✔

» if one process “goes on vacation,” the other 
will still buy milk ✔

❗ Trace: A1-B1-A2-B2-A7-B7 

» If both processes leave note at the same time: 
nobody will buy milk. ➞ starvation!
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Computerized Too Much Milk — Attempt 4

Idea: explicit tie-break rule

» process B buys the milk if both try
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Computerized Too Much Milk — Attempt 4

Processes A:                    Process B:
1:  Leave NoteA;                Leave NoteB;     
2:  if (NoNoteB) {              while (NoteA) DoNothing;
3:      if (NoMilk) {           if (NoMilk) {
4:          Buy Milk;                   Buy Milk;
5:      }                       }            
6:  }                           Remove NoteB;    
7:  Remove NoteA;               

» Does this work?
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Attempt 4 — Does it work?
Finally, yes!

» at most one process will buy milk ✔

» somebody will buy milk in all cases ✔

But: 

» asymmetric & complex code

» Difficult to extend: what happens if a third roommate joins? 
What happens if there are multiple fridges & a pin board?

» Process B is busy-waiting (line 2), which wastes resources 
(especially on a uniprocessor).
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The OS Approach: Abstraction

Problem:

» Piecing together a synchronization solution 
from low-level hardware primitives (like 
atomic read/write) is too cumbersome and 
error-prone.

Solution:

» A higher-level abstraction at the OS level: semaphores

» Flexible, portable semantics, easier to reason about
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Higher-Level Synchronization Primitive: Goals

What are desirable properties for a general, high-level 
synchronization primitives?
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Higher-Level Synchronization Primitive: Goals

» Correctness: allow at most one process in critical 
section at a time

» Progress: processes must be able to stall (“go on 
vacation”) for arbitrary amounts of time outside 
critical section

» Fairness: if multiple processes are waiting, don’t let 
anyone wait “forever”

» Efficiency: don’t waste large amounts of resources 
on waiting processes

» Simplicity: should be easy to use
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Semaphores
A semaphore is a counter with two atomic operations:

» P(): wait for counter to exceed zero, then atomically 
decrement by 1

» after operation returns, we know counter was 
positive

» V(): increment counter by 1

» allows exactly one, already waiting or future, P() 
operation to proceed

Proposed by Edsger Dijkstra in 1962.
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Semaphore Operation Names
» P(): Dutch proberen (to test), passeren (to pass), or pakken 

(to grab)

» Common alternative: wait()

» Linux kernel: down()

» Java: acquire()

» V(): Dutch verhogen (to increase) or vrijgave (release)

» Common alternative: signal() 

» Linux kernel: up()

» Java: release()
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Computerized Too Much Milk — Attempt 5

Idea: use a semaphore named OKToBuyMilk
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Computerized Too Much Milk — Attempt 5

    Processes A & B:
1:  P(OKToBuyMilk);
2:  if (NoMilk) {
3:      Buy Milk;
4:  }          
5:  V(OKToBuyMilk);

» Does this work? What is right right initial value 
for OKToBuyMilk?
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Binary semaphore
Important special case: a binary semaphore that 
takes on only the values zero and one can be used 
to provide mutual exclusion.

» initialize to one

» lock() = P()
➞ counter becomes zero, no other P() can pass

» unlock() = V()
➞ lock released, next critical section can start 
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Proper use of (Binary) Semaphores

What to do and what to avoid when dealing with locks 
or semaphores?

MPI-SWS 37



Proper use of (Binary) Semaphores

» Always lock with P() before manipulating shared data

» Always unlock with V() after manipulating shared 
data

» Do not lock again if already locked (➞ requires 
reentrant locks)

» Do not unlock if it was not locked by the same process

» but special cases exists where it’s ok to break this 
rule — can you think of an example?

» Keep critical sections as short as possible.
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Condition Synchronization
» Semaphores can be used for more than just 

mutual exclusion

» Condition synchronization: permit processes to 
wait for events to occur without wasting 
resources (busy-waiting).

» Also called counting semaphores: opposite of 
binary semaphores (i.e, regular semaphores that 
can take on any value).

» Typically, one counting semaphore per event type
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Producer & Consumer Example

Setting:

» one process, the producer, creates data items

» another process, the consumer, consumes data 
times

» shared, limited-size pool of buffers to hold 
produced, but not yet consumed data items

What are the requirements?
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Producer & Consumer Example

Requirements:

» consumer must wait for data to be available
➞ wait for “data produced” event

» producer must wait for buffer space to be 
available
➞ wait for “buffer emptied” event

» at most one process must manipulate buffer at 
the same time
➞ mutual exclusion
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Producer & Consumer Example

How many counting and binary semaphores do we 
need?

What are their initial values?

Assume: we have space for numBuffers data items.
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Producer & Consumer Example

Two counting semaphores:
 - buffer_emptied, initialized to numBuffers
 - buffer_filled, initialized to zero

One binary semaphore:
 - buffer_pool_mutex, initialized to one
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Producer Process
Idea: wait for space, get empty buffer, produce, make 
full buffer available
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Producer Process
P(buffer_emptied);
P(buffer_pool_mutex);
get buffer from pool of empty buffers;
V(buffer_pool_mutex);
produce data in buffer;
P(buffer_pool_mutex);
add buffer to pool of full buffers;
V(buffer_pool_mutex);
V(buffer_filled);
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Consumer Process
Idea: wait for data, get full buffer, consume, make 
empty buffer available
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Consumer Process
P(buffer_filled);
P(buffer_pool_mutex);
get buffer from pool of full buffers;
V(buffer_pool_mutex);
process data in buffer;
P(buffer_pool_mutex);
add buffer to pool of empty buffers;
V(buffer_pool_mutex);
V(buffer_emptied);
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Discussion
» Why does the producer P(buffer_emptied), but 

V(buffer_filled)?

» What changes are required to add a second consumer?

» Could we have separate binary semaphores 
empty_buffer_mutex and full_buffer_mutex?

» Can we change the order of the V() operations? (i.e., 
V(buffer_pool_mutex) after V(buffer_emptied)?)

» Can we change the order of the P() operations? (i.e, 
P(buffer_pool_mutex) before P(buffer_filled)?)
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Deadlock
Or “deadly embrace” [Dijkstra].

» Cycle in the wait-for graph.

» A is waiting for B, B is waiting for C, …, Y is waiting for Z, 
and Z is waiting for A

To avoid deadlock, always acquire nested locks in the same 
order. Examples:

» P(X); P(Y); V(Y); V(X) || P(Y); P(X); V(X); V(Y) will 
deadlock. 

» P(X); P(Y); V(Y); V(X) || P(X); P(Y); V(Y); V(X) is fine. 
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Another Synchronization Example

Setting:

» a shared database 

» multiple readers may access database 
simultaneously

» each writer requires exclusive access

Which constraints do we need to enforce?
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Shared Database — Specification

» writers can only proceed if there are no active 
readers or writers

» readers can only proceed if there are no active 
or waiting writers
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Shared Database — Variables

Four (non-atomic) state variables:

» AR & WR: number of active & waiting readers

» AW & WW: number of active & waiting writers

Semaphores:

» protect state variables with semaphore Mutex

» writers use semaphore OKToWrite to wait

» readers use semaphore OKToRead to wait
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Initial Values
AR = AW = WR = WW = 0

Mutex = 1

OKToWrite = 0

OKToRead = 0
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Reader Process
» readers can only proceed if there are no active or 

waiting writers

Idea: 

1. first, check for any writers

2. start reading if none are present; otherwise wait

3. don’t forget to let (later-arriving) writers know a read is in 
progress

4. the last reader to leave must notify a waiting writer (if any)

MPI-SWS 54



Reader Process
Reader entry:               Reader exit:
P(Mutex);                   […finish reading DB…]
if (AW + WW == 0) {         P(Mutex);
    V(OKToRead);            AR = AR - 1;
    AR = AR + 1;            if (AR == 0 && WW > 0) {
} else {                        V(OKToWrite);
    WR = WR + 1;                AW = AW + 1;
}                               WW = WW - 1;
V(Mutex);                   }
P(OKToRead);                V(Mutex);
[…start reading DB…]
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Some Examples
1. Single reader enters and leaves system

2. Two readers enter and leave system
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Writer Process
» writers can only proceed if there are no active 

readers or writers

Idea: 

1. first, check for any writers or readers

2. start writing if nobody else is present; otherwise wait

3. when leaving, unblock next writer…

4. …or all readers if no writer is waiting
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Writer Process
Writer entry:                   Writer exit:
P(Mutex);                       […finish writing DB…]
if (AW + AR + WW == 0) {        P(Mutex);   
    V(OKToWrite);               AW = AW - 1;
    AW = AW + 1;                if (WW > 0) {
} else {                            V(OKToWrite);
    WW = WW + 1;                    AW = AW + 1;
}                                   WW = WW - 1;
V(Mutex);                       } else while (WR > 0) {
P(OKToWrite);                       V(OKToRead);
[…start writing DB…]                AR = AR + 1;
                                    WR = WR - 1;
                                }
                                V(Mutex);
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More Examples
1. Single writer W1 enters and leaves system

2. Two readers R1, R2 enter system

3. Writer W2 enters system and waits

4. Reader R3 enters system and waits

5. Readers R1, R2 leave system, writer W2 
continues

6. Writer W2 leaves system, reader R3 continues 
and leaves
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Discussion
» Is the “+ WW” necessary in the writer entry 

check?

» If there are both readers and writers, who gets 
priority? Always?

» Which values do AW, OKToRead, and OKToWrite 
assume?

» Is the first writer to execute P(Mutex) 
guaranteed to be the first writer to access the 
DB?
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Semaphore 
Implementation
» Semaphores are a powerful, higher-level 

abstraction…

» … but are not provided by hardware.

» The OS must provide a semaphore 
implementation based on the available atomic 
primitive operation provided by hardware.
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How to Implement Semaphores

» Could use atomic reads and writes, like in too-
much-milk example…

» …but that leads to busy-waiting and inelegant 
solution.
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Semaphore System Calls
» Instead, realize P() and V() as system calls in the 

kernel.

» Block (or suspend) threads that must wait in P() by

» setting their state to WAITING and

» removing them from the ready queue.

» Unblock (or resume) waiting threads in V() by

» setting their state to READY and

» adding them to the ready queue.

MPI-SWS 63



Semaphore Sketch
typedef struct {
    int count;
    queue q;
} Semaphore;

» P(): atomically check count and add process to q if count <= 0;
otherwise decrement count

» V(): atomically resume process in q (if any);
otherwise increment count

» But access to the struct is not atomic…

» …how to make sure that operations are effectively atomic?
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Uniprocessor Solution
Idea: disable interrupts to avoid interleaving “in the 
middle” of a P() or V() operation.
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Uniprocessor Solution: P()
void P(Semaphore &s) {
    Disable interrupts;
    if (s->count > 0) {
        s->count -= 1;
    } else {
        set_state(current_thread, WAITING);
        remove_from_ready_queue(current_thread);
        add_to_queue(&s->q, current_thread);
        schedule(); /* context-switch away */
    }
    Enable interrupts;
}
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Uniprocessor Solution: V()
void V(Semaphore &s) {
    Disable interrupts;
    if (isEmpty(&s->q)) {
        s->count += 1;
    } else {
        thread = RemoveFirst(&s->q);
        set_state(thread, READY);
        add_to_ready_queue(thread);
    }
    Enable interrupts;
}
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The Multiprocessor Case
» Why does the previous solution not work on a 

multiprocessor?
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The Multiprocessor Case
» Why does the previous solution not work on a 

multiprocessor?
➞ Concurrent modification of Semaphore struct

» Must exclude both:

» local interleaving (as on a uniprocessor)

» accesses on remote processors

» Can we just turn off interrupts on all 
processors?
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Multiprocessor Approach
1. Turn off interrupts to protect against local 

interleaving.

2. Use a flag and busy-waiting to synchronize with 
other cores (➞ a spin lock).

» spin_lock(int*) / spin_unlock(int*)

» Wait, isn’t busy-waiting “bad”?

» Why is it ok here?
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Multiprocessor Solution
» Add a spin lock: an int variable to serve as a 

“operation is currently in progress” flag.

typedef struct {
    int slock; /* initially 0 */
    int count;
    queue q;
} Semaphore;
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Multiprocessor Solution: P()
void P(Semaphore &s) {
    Disable interrupts;
    spin_lock(&s->slock);
    if (s->count > 0) {
        s->count -= 1;
        spin_unlock(&s->slock);
    } else {
        set_state(current_thread, WAITING);
        remove_from_ready_queue(current_thread);
        add_to_queue(&s->q, current_thread);
        spin_unlock(&s->slock);
        schedule(); /* context-switch away */
    }
    Enable interrupts;
}
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Multiprocessor Solution: V()
void V(Semaphore &s) {
    Disable interrupts;
    spin_lock(&s->slock);
    if (isEmpty(&s->q)) {
        s->count += 1;
    } else {
        thread = RemoveFirst(&s->q);
        set_state(thread, READY);
        add_to_ready_queue(thread);
    }
    spin_unlock(&s->slock);
    Enable interrupts;
}
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How to Implement Spin Locks?

» Most CISC machines provide some sort of atomic read-modify-
write instruction.

» Commonly available: test-and-set (TAS) operation

» always sets variable to one

» returns old value prior to write

» RISC alternative: load-linked (LDL) and store-conditional (STC) 
instructions

» LDL establishes link between memory location and processor

» any write to a linked memory location destroys its links

» STC fails if written-to memory location is not linked
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Test-and-Test-and-Set (TTAS) Spin Lock

Idea: busy-wait until old value was zero (= unlocked)
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Test-and-Test-and-Set (TTAS) Spin Lock

Idea: busy-wait until old value was zero (= unlocked)

void spin_lock(int *lock) {
    do {
        while (*lock)
            /*do nothing*/;
    } while (TAS(lock) == 1);
}

void spin_unlock(int *lock) {
    *lock = 0;
}
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LDL-STC Spin Lock
Idea: emulate TAS with LDL-STC
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LDL-STC Spin Lock
Idea: emulate TAS with LDL-STC

int TAS(int *x) {
    do {
        old_value = LDL(x);        
    } while (STC(x, 1) == STORE_FAILED);
    return old_value;
}
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Spin Lock Discussion
» A real implementation must worry about compiler 

barriers and memory fences
(➞ weak memory consistency).

» A simple TTAS lock ensures no order.

» Starvation possible under heavy contention, 
especially on large multicores.

» Polling of shared variable is not at all friendly to 
cache-consistency protocol.

» Much better spin locks exist…
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Semaphore Key Points
Two fundamental uses for semaphores (review both!):

» mutual exclusion

» condition synchronization

Semaphores are an example of layering:

» provide powerful abstraction (simple, portable, as 
many as needed)

» deal with atomic operations offered by hardware 
just once in the OS kernel to implement semaphores

MPI-SWS 80


