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Announcements

1. First assignment out today. Start working on 1t early.

> http://courses.mpi—sws.org/0os-wsis/

2. Send email to course mailing list if you are still
looking for a partner

3. Slides available on course homepage a day or so after
lecture.

> This does not replace attendance. Not all
discussed topics will be reflected in the slides.

> Take your own notes and ask questions.
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Review: Processes

> sphere of isolation (protection domain) and computation
in progress (thread)

>> Independent processes
> perfectly isolated
> deterministic
>> cooperating processes
> possibly non-deterministic
>> require proper synchronization

> Why cooperate?
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Cooperating Processes

How can processes cooperate?



Cooperating Processes

> through shared files

> explicitly via communication channels
> send() / receive() — message passing
> read() /write() — pipelines

> EX: grep bar /tmp/foo | sort -n | head 12

> share memory

> some, but not all memory: shared segments (e.g., mmap())

>> all memory: multithreaded process
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Review: Threads

>>

>>

>>

>>

multithreaded processes: can have more than one
computation in progress in a sphere of isolation

absolutely no isolation between threads of the
SaIme process

each thread has its own program counter (PC),
register contents, and stack

Why have threads?
> Why not just communication channels?

> Why not just shared memory segments?

MPI-SWS



Review: Race Condition

Processes “racing” to carry out their conflicting operation.
Example:

A =o0x1 || A= 0x10000
Outcome depends on...

> interleaving of operations and relative speed of
processes

> on what exactly constitutes an atomic operation

While there can be benign races, a race condition is typically
indicative of bugqy or missing synchronization.
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Review: Atomic Operations

>>

>>

>>

>>

Cannot be interrupted / interleaved “in the
middle” of execution.

Fixed set of primitive atomic ops provided by
hardware.

On a uniprocessor, anything between two
Interrupts is atomic: = interrupts masked /
disabled = atomic.

For now, suppose we have only atomic reads
and atomic writes.
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The “too much milk” problem

Motivational example to illustrate challenges of proper
synchronization.

Setting:

> You and a roommate (two processes). Buy new milk (action)
if none left in fridge (condition).

Protocol:

> Whoever notices that there’s no milk left goes shopping.

What could go wrong?
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The “too much milk” problem

Pexrson A Person B
3:00 Look in fridge. Out of milk.

3:05 Leave for store.

3:10 Arrive at store. Look in fridge. Out of milk.
3:15 Leave store. Leave for store.

3:20 Arrive home, put milk away. Arrive at store.

3:25 Leave store.

3:30 Arrive home. OH, NO!

>> What does correct mean?
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Specification

> don’t buy more than one bottle of milk at the same time

> somebody needs to go shopping
Refined:

> at most one person goes shopping at the same time
(= mutual exclusion)

>> if one person has gone shopping (= critical section), the
other should await the outcome

> if there is no milk left, somebody should “eventually”
o0 shopping (— progress)
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Terminology

Mutual exclusion / mutex: a mechanism that
ensures that, from a set of operations, at most one
happens at the same time (all others are excluded)

Critical section: a section of code (or a collection
of operations) which only one process may be
executing at the same time

How accomplished?
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Locks

A common way to realize mutual exclusion 1s to
use a locking mechanism:

> real-world equivalent: leave a note ”hey, I’'m
getting milk; will be back soon”

> Jlock() before a critical section (= leave a note)

>> unlock() after a critical section (= remove note)

> must wait if locked (= don’t shop if note on fridge)
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Computerized Too Much Milk — Attempt 1

[dea: before shopping, leave a note on the refrigerator
(= lock the shopping operation)
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Computerized Too Much Milk — Attempt 1

Processes A & B:
1: 1f (NoMilk) {

2: if (NoNote) {

3: Leave Note;
4: Buy Milk;

5: Remove Note;
6 }

7: }

>> Does this work?
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Attempt 1 — Why it fails

! Trace: A1-B1-A2-B2-A3-B3-...
> We have made the problem less likely, but we

haven’t fixed it: = typical of broken synchronization

> Root cause: A and B observe exactly the same state
(no milk, no note), so reach the same conclusion

> Why does attempt 1 work for humans, but not
computerss

> Can we fix it by leaving the note first< Before
checking for milk¢

MPI-SWS 16



Computerized Too Much Milk — Attempt 2

[dea: break the symmetry

> A buys if there is no note

>> B buys if there is a note

Etffectively, take turns to buy milk and only go if
1t’s your turn.
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Computerized Too Much Milk — Attempt 2

Processes A: Process B:
1: 1if (NoNote) { if (Note) {
2 if (NoMilk) { if (NoMilk) {
3: Buy Milk; Buy Milk;
4: } }
5: Leave Note;s Remove Note;
6: } }

>> Does this work?
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Claim: at most one process will buy milk.

How can you tell?
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Claim: at most one process will buy milk.

How can you tell< Prove it!

A proof sketch:

1. A note will be left only by A, and only if there isn’t already a
note.

A note will be removed only by B, and only if there is a note.

Thus, there i1s either one note, or no note.

2.

3.

4. 1f there is a note, only B will buy milk.

5. If there is not a note, only A will buy milk.
6.

Thus, only one process will buy milk.
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But does it really works

> What if process B goes on vacation¢ (= doesn’t
run for some time, e.g., blocked on 1/O)

> Process A will not be able to buy milk more
than once. = starvation!

> Root cause: for A, no difference between ”you’re
buying” and ”not my turn”
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Computerized Too Much Milk — Attempt 3

[dea: use 2 separate notes to tell apart who is buying

MPI-SWS



Computerized Too Much Milk — Attempt 3

Processes A: Process B:

1: Leave NoteAj Leave NoteB;

2: 1f (NoNoteB) { if (NoNoteA) {

3: if (NoMilk) { if (NoMilk) {
4: Buy Milk; Buy Milk;
5: } }

6: } }

7: Remove NoteA; Remove NoteB;

>> Does this work?
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Attempt 3 — Does it work?

> at most one process will buy milk ¢

> 1f one process “goes on vacation,” the other
will still buy milk ¢

! Trace: A1-B1-A2-B2-A7-B7

> [f both processes leave note at the same time:
nobody will buy milk. = starvation!
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Computerized Too Much Milk — Attempt 4

[dea: explicit tie-break rule

> process B buys the milk if both try
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Computerized Too Much Milk — Attempt 4

Processes A: Process B:

1 Leave NoteAj Leave NoteB;

2: 1f (NoNoteB) { while (NoteA) DoNothing;
3 if (NoMilk) { if (NoMilk) {

4: Buy Milk; Buy Milk;

5 } }

6: } Remove NoteB;

7 Remove NoteAj;

>> Does this work?
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Attempt 4 — Does it work?

Finally, yes!

>> at most one process will buy milk ¢

> somebody will buy milk 1n all cases v/

But:

> asymmetric & complex code

> Difficult to extend: what happens if a third roommate joins<
What happens if there are multiple fridges & a pin board?

> Process B is busy-waiting (line 2), which wastes resources
(especially on a uniprocessor).

MPI-SWS
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The OS Approach: Abstraction

Problem:

> Plecing together a synchronization solution
from low-level hardware primitives (like
atomic read/write) is too cumbersome and
error-prone.

Solution:

> A higher-level abstraction at the OS level: semaphores

> Flexible, portable semantics, easier to reason about
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Higher-Level Synchronization Primitive: Goals

What are desirable properties for a general, high-level
synchronization primitives?
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Higher-Level Synchronization Primitive: Goals

> Correctness: allow at most one process in critical
section at a time

> Progress: processes must be able to stall (“go on
vacation”) for arbitrary amounts of time outside
critical section

> Fairness: if multiple processes are waiting, don’t let
anyone wait “forever”

> Efficiency: don’t waste large amounts of resources
on waiting processes

> Simplicity: should be easy to use

MPI-SWS 30



Semaphores

A semaphore is a counter with two atomic operations:

> P(): wait for counter to exceed zero, then atomically
decrement by 1

> after operation returns, we know counter was
positive

> V(): Increment counter by 1

>> allows exactly one, already waiting or future, P()
operation to proceed

Proposed by Edsger Dijkstra in 1962.
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(c) 2007, Flickr user Xerones, https://www.flickr.com/photos/xerone:



Semaphore Operation Names

>> P(): Dutch proberen (to test), passeren (to pass), or pakken
(to grab)

>> Common alternative: wait()
> Linux kernel: down()
> Java: acquire()
> V(): Dutch verhogen (to increase) or vrijgave (release)
> Common alternative: signal()
> Linux kernel: up()

> Java: release()
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Computerized Too Much Milk — Attempt 5

[dea: use a semaphore named OKToBuyMilk
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Computerized Too Much Milk — Attempt 5

Processes A & B:
1: P(OKToBuyMilk)3
2: 1f (NoMilk) {
3: Buy Milk;
4: }
5: V(OKToBuyMilk);

> Does this work? What is right right initial value
for OKToBuyMilke
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Binary semaphore

Important special case: a binary semaphore that
takes on only the values zero and one can be used
to provide mutual exclusion.

> 1nitialize to one

> lock() = P()
— counter becomes zero, no other P() can pass

> unl

—
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loc]

() = V()

K released, next critical section can start

36



Proper use of (Binary) Semaphores

What to do and what to avoid when dealing with locks
or semaphores?
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Proper use of (Binary) Semaphores

> Always lock with P() before manipulating shared data

> Always unlock with v () after manipulating shared
data

> Do not lock again if already locked (= requires
reentrant locks)

>> Do not unlock if it was not locked by the same process

> but special cases exists where it’s ok to break this
rule — can you think of an example<

> Keep critical sections as short as possible.
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Condition Synchronization

> Semaphores can be used for more than just
mutual exclusion

> Condition synchronization: permit processes to
wait for events to occur without wasting
resources (busy-waiting).

> Also called counting semaphores: opposite of
binary semaphores (i.e, regular semaphores that
can take on any value).

> Typically, one counting semaphore per event type
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Producer & Consumer Example

Setting:
> one process, the producer, creates data items

>> another process, the consumer, consumes data
times

> shared, limited-size pool of buffers to hold
produced, but not yet consumed data items

What are the requirements?
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Producer & Consumer Example

Requirements:

> consumer must wait for data to be available
— walit for “data produced” event

> producer must wait for buffer space to be
available
— walit for “buffer emptied” event

> at most one process must manipulate buffer at
the same time
— mutual exclusion
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Producer & Consumer Example

How many counting and binary semaphores do we
need?

What are their initial values?

Assume: we have space for numBuffers data items.
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Producer & Consumer Example

Two counting semaphores:
- buffer_emptied, Initialized to numBuffers

- buffer_filled, 1nitialized to zero

One binary semaphore:
- buffer_pool_mutex, Initialized to one
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Producer Process

[dea: wait for space, get empty buffer, produce, make
full buffer available

MPI-SWS
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Producer Process

P(buffexr_emptied);
P(buffexr_pool_mutex);

get buffer from pool of empty buffers;
V(buffexr_pool_mutex);

produce data in buffer;
P(buffexr_pool_mutex);

add buffer to pool of full buffers;
V(buffexr_pool_mutex);

V(buffer_filled);

MPI-SWS
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Consumer Process

[dea: wait for data, get full buffer, consume, make
empty buffer available

MPI-SWS
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Consumer Process

P(buffer_filled);
P(buffexr_pool_mutex);

get buffer from pool of full buffers;
V(buffer_pool_mutex);

process data in buffer;
P(buffexr_pool_mutex);

add buffer to pool of empty buffers;
V(buffexr_pool_mutex);
V(buffexr_emptied);

MPI-SWS
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Discussion

> Why does the producer P(buffer_emptied), but
V(buffer_filled) <

> What changes are required to add a second consumer<

> Could we have separate binary semaphores
empty_buffer_mutex and full_buffer_mutex?

>> Can we change the order of the v() operations? (i.e.,
V(buffer_pool_mutex) after V(buffer_emptied)<)

> Can we change the order of the P() operations< (i.e,
P(buffer_pool_mutex) before P(buffer_filled)?)
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Deadlock

Or “deadly embrace” [Dijkstral.

> Cycle in the wait-for graph.

> A 1s waiting for B, B is waiting for C, ..., Y is waiting for Z,
and Z is waiting for A

To avoid deadlock, always acquire nested locks in the same
order. Examples:

> P(X); P(Y); V(Y); V(X) |1 P(Y); P(X); V(X); V(Y) will
deadlock.

> P(X); P(Y); V(Y); V(X) || P(X); P(Y); V(Y); V(X) isfine.
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Another Synchronization Example

Setting:
> a shared database

>> multiple readers may access database
simultaneously

>> each writer requires exclusive access

Which constraints do we need to enforce?
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Shared Database — Specification

> Writers can only proceed if there are no active
readers or writers

>> readers can only proceed if there are no active
Or waiting writers
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Shared Database — Variables

Four (non-atomic) state variables:

> AR & WR: number of active & waiting readers

> AW & WW: number of active & waiting writers
Semaphores:

>> protect state variables with semaphore Mutex
>> Writers use semaphore OKToWrite to wait

> readers use semaphore OKToRead to wait
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Initial Values

AR = AW = WR = WW = 0O
Mutex = 1
OKToWrite = 0O

OKToRead = 0

MPI-SWS
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Reader Process

>> readers can only proceed if there are no active or
walting writers

Idea:

1. first, check for any writers
2. start reading if none are present; otherwise wait

3. don’t forget to let (later-arriving) writers know a read is in
progress

4. the last reader to leave must notify a waiting writer (if any)
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Reader Process

Reader entry: Reader exit:
P(Mutex); [..finish reading DB...]
if (AW + WW == 0) { P(Mutex) 3

V(OKToRead); AR = AR - 1

AR = AR + 1; if (AR == 0 8% WW > 0)
} else { V(OKToWrite)3

WR = WR + 13 AW = AW + 13
} WW = WW - 13
V(Mutex); }
P(OKToRead); V(Mutex)

[..staxrt reading DB...]
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Some Examples

1. Single reader enters and leaves system

2. Two readers enter and leave system

MPI-SWS
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Writer Process

>> Writers can only proceed if there are no active
readers or writers

Idea:

1. first, check for any writers or readers
2. start writing if nobody else is present; otherwise wait
3. When leaving, unblock next writer...

4. ...orall readers if no writer is waiting
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Writer Process

Writer entry:
P(Mutex);
if (AW + AR + WW == 0) {
V(OKToWrite);
AW = AW + 13
} else {
WW = WW + 13
}
V(Mutex);
P(OKToWrite)3
[..start writing DB...]

MPI-SWS

Writer exit:
[..finish writing DB...]
P(Mutex);
AW = AW - 13
if (WW > o) {
V(OKToWrite);
AW = AW + 13
WW = WW - 13
} else while (WR > 0)
V(OKToRead);
AR = AR + 13
WR = WR - 13
}
V(Mutex);
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More Examples

1. Single writer W1 enters and leaves system
2. Two readers R1, R2 enter system
. Writer W2 enters system and waits

. Reader R3 enters system and walits

Ul RN W

. Readers Ri, R2 leave system, writer W2
continues

6. Writer W2 leaves system, reader R3 continues
and leaves
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Discussion

>>

>>

>>

>>

[s the “+ ww” necessary in the writer entry
check?

[f there are both readers and writers, who gets
priority¢ Always?

Which values do Aw, OKToRead, and OKToWrite
assume-

[s the first writer to execute P(Mutex )

oguaranteed to be the first writer to access the
DB?¢
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Semaphore
Implementation

> Semaphores are a powerful, higher-level
abstraction...

>> ... but are not provided by hardware.

> The OS must provide a semaphore
implementation based on the available atomic
primitive operation provided by hardware.

MPI-SWS
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How to Implement Semaphores

> Could use atomic reads and writes, like 1n too-
much-milk example...

> ...but that leads to busy-waiting and inelegant
solution.
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Semaphore System Calls

> Instead, realize P() and V() as system calls in the
kernel.

>> Block (or suspend) threads that must wait in P() by
> setting their state to WAITING and
> removing them from the ready queue.

> Unblock (or resume) waiting threads in V() by

> setting their state to READY and

> adding them to the ready queue.
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Semaphore Sketch

typedef struct {
int count;
queue q;

} Semaphozre;

> P(): atomically check count and add process to q if count <= o0;
otherwise decrement count

> V(): atomically resume process in q (if any);
otherwise increment count

> But access to the struct is not atomic...

> ...how to make sure that operations are effectively atomic?

MPI-SWS
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Uniprocessor Solution

[dea: disable interrupts to avoid interleaving “in the
middle” of a P() or v() operation.
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Uniprocessor Solution: P()

void P(Semaphore &s) {

Disable interxrupts;

if (s->count > 0) {
s->count -= 13

} else {
set_state(current_thread, WAITING);
remove_from_ready_queue(current_thread);
add_to_queue(&s->q, current_thread);

schedule(); /% context-switch away */

}

Enable interrupts;

}
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Uniprocessor Solution: V()

void V(Semaphore &s) {

Disable interxupts;

if (isEmpty(&s->q)) {
s->count += 13

} else {
thread = RemoveFirst(&s->q);
set_state(thread, READY);
add_to_ready_queue(thread);

}

Enable interrupts;

}
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The Multiprocessor Case

> Why does the previous solution not work on a
multiprocessore



The Multiprocessor Case

> Why does the previous solution not work on a
multiprocessore

— Concurrent modification of Semaphozre Struct
> Must exclude both:

> local interleaving (as on a uniprocessor)

>> accesses on remote processors

> Can we just turn off interrupts on all
PIOCEeSSOrS<
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Multiprocessor Approach

1. Turn off interrupts to protect against local
Interleaving.

2. Use a flag and busy-waiting to synchronize with
other cores (= a spin lock).

> spin_lock(intx) / spin_unlock(intx)
> Wait, isn’t busy-waiting “bad”?

> Why is it ok here?
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Multiprocessor Solution

> Add a spin lock: an int variable to serve as a
“operation is currently in progress” flag.

typedef struct {
int slock; /% initially o0 =/
int count;
queue q;

} Semaphozxe;

MPI-SWS
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Multiprocessor Solution: P()

void P(Semaphore &s) {

Disable interrupts;

spin_lock(&s->slock);

if (s->count > 0) {
s->count -= 13
spin_unlock(&s->slock);

} else {
set_state(current_thread, WAITING);
remove_from_ready_queue(current_thread);
add_to_queue(&s->q, current_thread);
spin_unlock(&s->slock);
schedule(); /% context-switch away %/

}

Enable interrupts;
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Multiprocessor Solution: v()

void V(Semaphore 8&s) {

Disable interrupts;

spin_lock(&s->slock);

if (isEmpty(&s->q)) {
s->count += 13

} else {
thread = RemoveFirst(&s->q);
set_state(thread, READY);
add_to_ready_queue(thread);

}

spin_unlock(&s->slock);

Enable interxrupts;

}

MPI-SWS
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How to Implement Spin Locks?

> Most CISC machines provide some sort of atomic read-modify-
write Instruction.

> Commonly available: test-and-set (TAS) operation
> always sets variable to one

> returns old value prior to write

>> RISC alternative: load-linked (LDL) and store-conditional (STC)
instructions

> LDL establishes link between memory location and processor

> any write to a linked memory location destroys its links

> STC fails if written-to memory location is not linked
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Test-and-Test-and-Set (TTAS) Spin Lock

[dea: busy-wait until old value was zero (= unlocked)
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Test-and-Test-and-Set (TTAS) Spin Lock

[dea: busy-wait until old value was zero (= unlocked)

void spin_lock(int x*lock) {
do {
while (%lock)
/*do nothingx/;
} while (TAS(lock) == 1)3;

void spin_unlock(int xlock) {

xlock = 03

}
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LDL-STC Spin Lock

[dea: emulate TAS with LDL=STC



LDL-STC Spin Lock

[dea: emulate TAS with LDL=STC

int TAS(int #x) {
do {
old_value = LDL(x);
} while (STC(x, 1) == STORE_FAILED);

return old_value;

MPI-SWS

78



Spin Lock Discussion

> A real implementation must worry about compiler
barriers and memory fences
(= weak memory consistency).

> A simple TTAS lock ensures no order.

>> Starvation possible under heavy contention,
especially on large multicores.

> Polling of shared variable is not at all friendly to
cache-consistency protocol.

> Much better spin locks exist...
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Semaphore Key Points

Two fundamental uses for semaphores (review both!):

> mutual exclusion

> condition synchronization
Semaphores are an example of layering:

> provide powerful abstraction (simple, portable, as
many as needed)

> deal with atomic operations offered by hardware
just once in the OS kernel to implement semaphores
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