
Processes
OS Lecture 2
UdS/TUKL WS 2015

1

Who am I?
» Björn Brandenburg

» bbb@mpi-sws.org

» http://www.mpi-sws.org/~bbb

» Head of the Real-Time Systems Group @ MPI-
SWS (since 2011)

» I work on real-time operating systems

» LITMUSRT: http://www.litmus-rt.org

2

http://www.mpi-sws.org/~bbb
http://www.litmus-rt.org

Announcements
1. Make sure you are subscribed to the mailing list

(see homepage).

» http://courses.mpi-sws.org/os-ws15/

2. Need to form a two-person team for assignments

» First assignment out next Monday

3. Send email to course mailing list if you are looking
for a partner

4. Reminder: take your own notes and ask questions.

3

http://courses.mpi-sws.org/os-ws15/

Every modern general-purpose OS has a notion of
a process.

» What is a process?

» Why have them?

4

Many roles of processes
» A computation in progress

» A sphere of isolation: process = program + “everything that it can
affect or be affected by”

» security & protection, scheduling, resource accounting, …

A basic unit for system organization/decomposition:

» complex, concurrent activities = many simple, sequential processes
that are being interleaved

Idealized abstraction:

» programmer is not aware of actual processor complexities, and no
need to worry about other processes

5

What is a process?
1. Historical perspective:

» virtualize the processor

» Evolution: single jobs ➞ batch job processing
➞ multiprogramming ➞ time-share systems

2. Modern perspective:

» Key abstraction for decomposition

» Sequential computation in progress

6

Historical Perspective

Original motivation: sharing expensive computers

» First computers: (manually) load program; run;
output results; repeat
➞ No abstraction at all!

» Idea: virtualize processor & memory
➞ give each running program a virtual processor

process = program running on a (virtual) processor

7

process ≠ program

8

process ≠ program

Each program may be executed multiple times.
➞ 1 program - processes

More than a program:

» computation in progress

» program + resources + state “how far we’ve gotten and
how to continue”

Less than a program:

» What looks like a single “program” to the user can
consist of many processes (e.g., gcc).

9

What’s in a process?
What does the OS have to keep track of?

10

What’s in a process?

Two key aspects:

» Computation in progress
➞ “how far we’ve gotten and how to continue”

» Sphere of isolation
➞ “things that it can affect or be affected by”

11

Computation in progress:

» program counter, indicating next instruction

» register file: set of CPU registers + current values

» the stack: state of incomplete function calls

Sphere of isolation:

» the text segment: code for the running program

» the heap: data of the running program

» set of OS resources (files, network connections,
credentials, …)

12

Modern Perspective (1/3)
Can you have more than one computation in progress
in the same sphere of isolation?

Yes.

» threads of execution or

» lightweight processes (LWP)

Now ubiquitous. Historically, only a single thread
per process.

13

Modern Perspective (2/3)
Two completely orthogonal concepts:

1. protection domains (= spheres of isolation)

» often (incorrectly) called “address spaces”

2. threads (= sequential computations in progress)

» each thread executes in some protection
domain

» We will discuss threads in more detail later.

14

Modern Perspective (3/3)
Almost any combination possible:

» 1 protection domain, 1 thread (classic process)

» 1 protection domain, many threads

» multithreaded process

» DOS, Classic Mac OS, many embedded systems

But also:

» 1 thread, many protection domains (thread migration)

» 1 protection domain, 0 threads (why?)

15

How is the processor
virtualized?

One physical CPU, one set of registers
 ➞ many “running” processes?

16

Processes are sequential

» Only one computation step at a time on a
(virtual) processor

» Concurrency: the OS interleaves execution of
processes on physical processor

» Context switch: preempt current process and
dispatch another

» Typically, a process is the basic unit of scheduling

» scheduling vs. dispatching

17

Process state

OS maintains a state machine for each process:

» READY: can be dispatched by scheduler

» RUNNING: currently executing on a processor

» WAITING: cannot proceed in execution until some
event occurs (e.g., waiting for I/O to complete)

There is always some process running, perhaps the
idle process.

On each processor, only one process can run at a time.

18

Process Control Block (PCB)

OS stores all relevant information about a process in the PCB.
(It’s just a struct with a special name.)

» process ID

» process state

» copies of register values (for context switch)

» memory state (which memory may be accessed)

» scheduling information

» accounting information

» user information

» …

19

Process Management (1/2)
» OS maintains several queues, depending on

process state

» ready queue(s) managed by scheduler

» queues of waiting processes

» each PCB is queued on some queue

» allocate & initialize PCB when process is
created, deallocate when process terminates

20

Process Management (2/2)
» How to initialize?

➞ fork() vs. CreateProcess()

» How to allocate?

» General Purpose OS (GPOS)
➞ dynamic allocation (kernel heap)
➞ as many processes as needed (memory limit)

» Real-Time OS (RTOS) / embedded OS
➞ statically allocated array of PCBs
➞ max. number processes known at design time

21

Multiprogramming vs. Time-sharing

Multiprogramming:

» More than one process can exist at a time

» Context switches at coarse granularity

» Some processes swapped out altogether

Time-sharing:

» multiple ready processes supported

» frequent context switches so that processes appear
to “run at the same time” to human observer

22

How does a context switch
work?

23

How does a context switch work?

Switching from prev to next.

1. Store all register contents, processor flags, etc. in PCB of prev.

» alternatively, push all registers on stack

2. Overwrite CPU’s stack register (SP) with next’s stack pointer
(stored in PCB).

3. Restore all register contents, processor flags, etc. from copy
in next’s PCB

» alternatively, pop all registers from stack

4. Return from function call (to return address on next’s
stack!!!)

24

switch_to(next):
 push R1 // <--- save all registers on prev’s stack
 push R2
 ...
 push Rn

 mov <next.stack_ptr>, SP // <--- the actual context switch,
 now next is running

 pop Rn // <--- restore all registers from next’s stack
 ...
 pop R2
 pop R1
 ret <--- return to whatever next was doing before preemption

25

prev: next:
push R1
push R2
 ...
push Rn
mov <next.stack_ptr>, SP // <--- the actual context switch

 pop Rn
 ...
 pop R2
 pop R1
 ret
 [....some computation....]
 [calls switch_to(prev)]
 push R1
 push R2
 ...
 push Rn
 mov <prev.stack_ptr>, SP
pop Rn // <--- restore all registers from prev’s stack
 ...
pop R2
pop R1
ret <--- return to whatever prev was doing before preemption

26

How to make sure a
process does not destroy

OS data structures?
e.g., accounting or scheduling information

27

Kernel mode vs. user mode
» modern processors have (at least) two modes

» kernel mode: unrestricted access to hardware and
privileged instructions & registers

» user mode: certain registers and privileged instructions
off limits

» enforced by hardware

» ensures process executing in user mode cannot
access memory belonging to kernel

» dispatcher switches mode from kernel mode to user mode
before continuing next process

28

How to regain control?
How to transfer control back to the OS

kernel / dispatcher when a user process
runs?

29

Return control to kernel
Problem: At some point, we must stop execution of a
user-mode process and return to kernel mode.

» Process may be stuck in while (true); loop

» Process may do something invalid, e.g., divide by zero

Solution: hardware ensures that certain well-defined
events automatically transfer execution to kernel
mode at a known location.

» Override program counter, enable kernel mode,
place status code in register or on stack.

30

Types of events
Traps or exceptions: synchronous (= internal) events

» system call

» error (illegal instruction, bad address, divide by zero, …)

» page fault (related to virtual memory)

Interrupts: asynchronous (= external) events

» character typed on terminal

» network packet arrived

» disk operation completed

» timer: set up by OS to regain control after allowed timeslice

31

How do interrupts work?

32

Interrupt and Exception Management

» Table of addresses of interrupt service routines (ISR) (or exception
handlers) at location known to processor (e.g., address stored
in register)

» populated by OS during bootup

» on interrupt / trap, the processor

1. switches to kernel mode

2. pushes status information & (certain) registers on stack

3. looks up the appropriate handler corresponding to the
interrupt / trap ID and branches to ISR

» Interrupts can be temporarily disabled or masked; traps
typically cannot be suppressed.

33

Completely Isolated
Processes

Benefits and properties?

34

Original Goal: Isolation
» complete isolation = processes are independent

» sequential & independent = deterministic

» output determined solely by input

» reproducible

» can pause and restart without ill effects

» Can load systems with arbitrary processes and
arbitrary number of processes without changing
results of computations (modulo memory limits
and differences in response times)

35

Terminology
uniprogramming: one process at a time, run to
completion

multiprogramming: multiple processes, one processor,
interleaved

multiprocessing: multiple processes, multiple processors

» each process on at most one processor at a time

» processes may migrate: run on different processors at
different times

» easy to do with independent processes

36

Cooperating Processes
What are reasons to give up on

independence? Effects?

37

Cooperating Processes: Why?

» Computers reflect social structure — humans
interact (email, shared files, etc.)

» Decomposition — solve a large, complex
problem with a collection of simple, sequential,
cooperating processes

» Performance — want to efficiently utilize
hardware (overlay I/O with useful computation)

» Example: load next video frame while
decoding current

38

Cooperating Processes: Effects

» shared (system) state: order of accesses by
different processes is relevant

» output may depend on interleaving of processes

» system behavior may be nondeterministic

» behavior may be irreproducible

Example: Process 1 writes “ABC” to the terminal.
Process 2 writes “CBA”. What can happen?

39

When is it safe to
interleave processes?

40

Not all operations are sensitive

A = 1; B = 2 has same outcome as B = 2; A = 1

» can safely interleave A = 1 || B = 2

But A = B + 1; B = 2 * B cannot be reordered.

What happens for A = 1 || A = 2?

» Can we get 3?

What happens for A = 0x1 || A = 0x10000?

41

Race Condition
Processes “racing” to carry out their conflicting
operation.

» outcome of computation depends on order of
interleaving and relative speed of processes

» don’t know what exactly will happen

» difficult to reason about

» common source of bugs

42

Atomic Operations
Cannot be interrupted “in the middle” of execution.

Example: suppose writes to 16-bit aligned words in
memory are atomic.

» If A is a 16-bit variable stored in an aligned word,
then A = 1 || A = 2 never yields A == 3

» If A is a 32-bit variable stored in an aligned word,
then A = 0x1 || A = 0x10000 can yield A ==
0x10001!

43

Where do atomic
operations come from?

44

Where do atomic operations come from?

Fixed set of atomic ops provided by hardware.

Common examples:

» word-aligned load/store are typically atomic

» fetch-and-increment

» test-and-set

» compare-and-exchange (or compare-and-swap, CAS)

On a uniprocessor, anything between two interrupts
is atomic: ➞ interrupts masked / disabled = atomic.

45

The OS Approach

The set of available hardware primitives:

» is fairly limited (e.g., often no CAS2)

» differs from machine to machine

» is difficult to use correctly

Solution:

» Provide a higher-level abstraction at the OS level

» Nice, portable semantics for user processes

» Realized in the kernel with available hardware primitives

46

