
Shared Memory
OS Lecture 9
UdS/TUKL WS 2015

MPI-SWS 1

Review: Virtual Memory
How is virtual memory realized?

1. Segmentation: linear virtual ➞ physical address
translation with base & bounds registers

2. Paging: arbitrary virtual ➞ physical address
translation by lookup in page table

3. Segmentation + paging: first segmentation, then
lookup in page table

» virtual address ➞ linear address ➞ physical address

» e.g., used in Intel x86 architecture (32 bits)

MPI-SWS 2

Example:1 x86 Page Table Entry (PTE)

P: present D: dirty A: accessed
R/W: read or read+write
U/S: user or supervisor (kernel)
PCD: cache disabled PWD: cache write through
PAT: extension

1 Figure from http://duartes.org/gustavo/blog/post/how-the-kernel-manages-your-
memory/ (A nice, easy-going tutorial; recommended further reading.)

MPI-SWS 3

http://duartes.org/gustavo/blog/post/how-the-kernel-manages-your-memory/
http://duartes.org/gustavo/blog/post/how-the-kernel-manages-your-memory/

Review: Sparse Address Spaces (1/2)

Why do we need explicit support for sparsely
populated virtual address spaces? (= big “empty”
gaps in virtual address space)

» Holes of unmapped addresses arise naturally due to shared
libraries, kernel memory (at high memory), heap allocations,
dynamic thread creation, etc.

» Problem: a flat page table can waste large amounts of memory

» Example: to represent bytes = 4Gb of memory with 4Kb pages,
we need PTEs

» At 4 bytes (1 = word) per PTE,
that’s 1024 pages = 4Mb!

MPI-SWS 4

Review: Sparse Address Spaces (2/2)

How are sparsely populated virtual address spaces
supported?

» Problem with flat page tables: most PTEs are marked
invalid to represent “holes”

» Idea: represent “holes” implicitly by absence of PTEs,
not explicitly with invalid PTEs

» Solution: hierarchical page tables: have many shorter
page tables, use some bits of virtual address to look
up which page table to use in a page table directory.

MPI-SWS 5

Example:2 x86 Multi-level Page Table

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Paging in Hardware | 47

up to 220 entries (i.e., at 4 bytes per entry, 4 MB of RAM) to represent the Page Table
for each process (if the process used a full 4 GB linear address space), even though a
process does not use all addresses in that range. The two-level scheme reduces the
memory by requiring Page Tables only for those virtual memory regions actually
used by a process.

Each active process must have a Page Directory assigned to it. However, there is no
need to allocate RAM for all Page Tables of a process at once; it is more efficient to
allocate RAM for a Page Table only when the process effectively needs it.

The physical address of the Page Directory in use is stored in a control register
named cr3. The Directory field within the linear address determines the entry in the
Page Directory that points to the proper Page Table. The address’s Table field, in
turn, determines the entry in the Page Table that contains the physical address of the
page frame containing the page. The Offset field determines the relative position
within the page frame (see Figure 2-7). Because it is 12 bits long, each page consists
of 4096 bytes of data.

Both the Directory and the Table fields are 10 bits long, so Page Directories and Page
Tables can include up to 1,024 entries. It follows that a Page Directory can address
up to 1024 × 1024 × 4096=232 memory cells, as you’d expect in 32-bit addresses.

Figure 2-7. Paging by 80 × 86 processors

DIRECTORY

Linear Address

TABLE OFFSET

31 22 21 12 11 0

cr3

Page Directory

Page Table

Page

2 Figure from Bovet and Cesati, Understanding the Linux Kernel, O Reilly Media, 3rd
edition, 2005.

MPI-SWS 6

Review: Missing Page Table Entries

What happens when a virtual address cannot be
resolved by the MMU?

» “cannot be resolved” = either entry in page table
directory is marked invalid, or PTE in page table is
marked invalid (= not present)

» The result is a page fault: an exception is triggered
and control is transferred to the OS-provided page
fault handler.

» Page fault handler has access to all register contents,
faulting instruction, and can implement arbitrary policy.

MPI-SWS 7

How do page faults differ from system calls?

And from other exceptions or interrupts?

» In large parts system calls, exceptions/traps,
and interrupts are the same.

» control flow diverted to OS-provided
handler; processor switchees to kernel mode;
register contents and status code provided

» Key difference: after system call or interrupt,
resume execution at next instruction, but after
page fault, re-execute faulting instruction

MPI-SWS 8

Exception during exception handling

What happens if a page fault (or any other
exception/trap) is encountered while handling a
page fault (or any other exception/trap)?

» On x86, a double fault exception (0x8) is generated,
for which the OS must provide an exception handler.

» What happens if an exception is encountered while
handling a double fault?

» On x86, a triple fault exception is generated, which
immediately resets the system.

MPI-SWS 9

Shared Memory
What does it mean for a page to be “shared”?

» Multiple processes can read from and/or write to
the same physical page.

» Historic platforms: all physical memory shared

» any thread can read / write any memory location

» With segmentation / paging: no virtual memory
shared at all: ➞ all processes perfectly isolated

» But selective sharing is useful. How to re-enable it?

MPI-SWS 10

How to give access to a page of memory?

What does the OS have to do to share a page P of
memory?

» Simply insert a page table entry (PTE) for the shared
physical page in the page table of each process that
shares P

» Any number of PTEs in any number of page tables can
refer to the same physical page

» Same physical page can be mapped by different processes
at different virtual addresses

» beware of pointers in shared memory segments!

MPI-SWS 11

How to take away access to a page of memory?

What does the OS have to do to “un-share” a page
of memory?

» Remove PTE (= mark as non-present) in the
page table of process that loses access rights.

» Is this enough?

» No! Stale mapping could still exist in translation
look-aside buffers (TLBs) of one or more cores

MPI-SWS 12

Review: When to flush the TLB?

» When introducing a new mapping — adding a
PTE to the page table at a previously invalid
virtual address — no TLB flush is required.

» When changing an existing mapping —
overwriting a valid PTE — a TLB flush is
required: a stale TLB entry may exist.

» When removing a mapping — zeroing a valid
PTE — a TLB flush is required.

» What happens on multiprocessors?

MPI-SWS 13

When and why does the OS share memory?

1. Explicitly, when requested by applications

» To enable efficient communication

2. Implicitly, to optimize resource usage

» Memory is scarce and valuable,
must be used efficiently

» This happens transparently to applications

MPI-SWS 14

Explicitly Shared Memory (1/2)

Example: In POSIX, user process can request a
shared memory segment with mmap().

void *mmap(void *addr, size_t length, int prot,
 int flags, int fd, off_t offset);

» addr — where to map the memory in virtual address space

» length — how much to map (multiple of page size)

» prot — combination of PROT_EXEC, PROT_READ, PROT_WRITE, or PROT_NONE

» flags — MAP_SHARED and many special cases…

» fd — file to map

» offset — offset within file where the mapping starts

MPI-SWS 15

Explicitly Shared Memory (2/2)

» Access control: two processes may (explicitly)
share memory if and only if they can map the
same file (file system permissions apply)

» can create temporary files as needed

» Backing pages: file is represented in memory
by (physical) pages anyway.

» Application-controlled: OS just installs /
removes PTEs corresponding to requested
operations.

MPI-SWS 16

Implicitly Shared Memory
Basic idea: store redundant information only once
Examples:

» Multiple instances of the same program, but
only one read-only copy of text segment (code)

» …only one read-only copy of constant data

» Shared library used by many processes, but
only one read-only copy of library code and
constants

MPI-SWS 17

Can we share even more?
Memory is scarce and copying is expensive.
Can we share additional memory? Heap memory?
Stack memory? Global variables?

» Problem: Heap, stack, globals are writable pages.

» Naïve sharing of writable memory
➞ processes overwrite each other’s updates!

» But: most writable memory is never written to in a
typical process.

» Which memory is written to depends on input.

MPI-SWS 18

Copy-on-Write (CoW)
Idea: Need a new copy of a writeable page only each time it is
actually written to.

» We can allocate such copies lazily on demand.

» When a write occurs, transparently make a copy of the
shared page and give the new copy to the writing process,
making it private.

» To do so, we must trap (= detect) a write attempt.

» This can be accomplished with PTE protection bits…

» Tradeoff: Nothing gained if all pages are written to, but
most programs modify only some of their memory.

MPI-SWS 19

How does CoW work?
1. Shared page is marked as read-only in page tables of all processes

that share it.

» OS must keep track of in which address spaces a physical page
is mapped

2. As a result, any write attempt leads to a page fault.

3. When a process traps into the kernel due to a write attempt, a new
physical page is allocated and a copy of the shared page is made.

4. The page table of the process that trapped is updated to point to
the newly allocated page, which is mapped with read-write
permissions.

5. The process that trapped is resumed by re-executing the faulting
instruction.

MPI-SWS 20

Applications of CoW
Some examples where CoW can have great effect:

» In UNIX and UNIX-like systems, new processes
are created with fork() by duplicating the calling
process. The semantics of fork() require the
entire address space to be “copied” — this is
much faster with CoW.

» Shared libraries with rarely-changed defaults

» Privately mapped files: where changes by one
process should not be seen by other processes.

MPI-SWS 21

Where does paged
memory come from?
With CoW and demand paging, the page fault
handler lazily sets up the page based on an
authoritative reference page (e.g., file contents).

Generalizing this notion, does the authoritative
source always have to be local?

» No! The page fault handler can determine
contents of page arbitrarily. E.g., via a network.

MPI-SWS 22

Distributed Shared Memory
What if we want to write multithreaded program
that takes advantage of all cores in a cluster
connected by a fast network?

» We can create a single virtual address space that spans separate
physical memories.

» The same virtual address space is used by threads on all hosts.

» Basic idea: map pages as always, but the underlying physical
reference page may reside on a remote host.

» To make this work, transfer page contents as needed: from remote
host’s memory when paging in; to remote host’s memory when
paging out (or when flushing dirty pages).

MPI-SWS 23

Coordinating Writes in a DSM

How can a node safely write to a page that may be
mapped on remote hosts?

» We can keep a cache of read-only copies of a page on
multiple hosts simultaneously.

» When a write traps on any host, invalidate the page
on all other hosts by (a) evicting it from their caches
and (b) unmapping it from the virtual address spaces
of their local processes.

» Once a host is the exclusive owner of page, it can
allow the local process to write to it.

MPI-SWS 24

DSM relies on read-only and read-mostly pages

Remember: many pages are never, or only rarely,
written to. Further, threads rarely access all pages.
This is essential to making DSM work. Why?

» If all shared pages are written to, the speed of the
computation will be limited by the network speed
(to propagate updates).

» If each thread accesses most pages, these will not
all fit into its local memory; the speed of the
computation will be limited by the network speed
as it pages in data from remote hosts.

MPI-SWS 25

DSM Principles in Modern Systems

DSM at the process level has fallen out of favor in
current system design. But the basic principles are
widely used nonetheless. Where and why?

» A modern multicore processor resembles a “distributed
systems on a chip”.

» Multiple sockets, with multiple cores and shared caches each.

» Very fast local caches, much slower access to remote caches
or global memory.

» Cache consistency protocols, operating at the level of cache
lines, are conceptually very similar to page-based DSMs.

MPI-SWS 26

Common VM “Trick”: Guard Pages

How to catch heap or global buffer over- and
underflows?

» Programs tend to write beyond allocated buffers…

» e.g., off-by-one errors, wrongly computed bounds

» These can be difficult to catch during testing, but can
have disastrous consequences (security vulnerabilities).

» Guard pages: between any two heap allocations, keep
some unmapped virtual addresses

» access past buffer = page fault = obviously an error

MPI-SWS 27

What to do with segments?
If we have both paging and segmentation, are
segments still useful?

» Depends. Segments are not necessary to provide
virtual memory.

» E.g., Linux does not use segments to realize address
spaces even if the hardware supports segmentation.

» However, there are other techniques for which
segments can be useful.

» Two examples here…

MPI-SWS 28

Another Defensive Technique: Stack Canaries

How to catch buffer overflows on the stack?

» Security vulnerability: buffer overflows on the stack
can overwrite return address, hijack control flow.

» Defense: place canary value on stack before return
address — before returning from function, check for
overwritten canary value.

» But where to store reference value such that attacker
can’t get to it?

» One solution: in a separate segment, the position of
which is randomized when the program is loaded.

MPI-SWS 29

How to Implement Thread-local Variables?

Thread-local variable:TLS each thread has a private
copy of a variable, can be accessed without locks.

Per-CPU variable: in kernel, each core has a private
copy of a variable. (Ex: scheduler queues)

» Same code for all cores / threads, but must reference
different physical addresses. How?

» One approach: use segment for thread-local variables.

» Each core / thread uses different base & bounds registers

TLS Further reading: http://www.akkadia.org/drepper/tls.pdf

MPI-SWS 30

http://www.akkadia.org/drepper/tls.pdf

