
Operating Systems

Björn Brandenburg and Peter Druschel
MPI-SWS / TU Kaiserslautern / Saarland University

1 Introduction

Reading: Anderson/Dahlin: Chapters 1-3; Silberschatz/Galvin/Gagne: Chapters
1-2

What is an operating system?
Layer of software between the hardware and application programs. Two main
functions:

• Resource manager

• Extended (abstract, virtual) machine

OS as resource manager

• mediator/coordinator: resolve conflicting resource demands

• protect users from each others (and from themselves)

• mechanisms and policies for resource sharing, information flow

OS as extended machine

• provides stable, portable, reliable, safe, well-behaved environment (ideally)

• Magician: makes computer appear to be more than it really is

• Single processor appears like many separate processors

• Single memory made to look like many separate memories, each potentially
larger than the real memory

1



Operating Systems 2

• Abstraction that is easier to program and reason about than the hardware

Physical machine Extended machine

Processor(s) Threads
Memory Processes
Disks Files
Networks Operating Comm. channels
Monitors/UIs System Events
Speakers
Microphones
Clock/Timer

What resources need to be managed?

• processors/cores (computation)

• main memory

• secondary memory (disks, non-volatile solid state)

• network links

• I/O devices (monitors/UIs, printers, audio, video)

OS must

• service all of these devices simultaneously,

• support safe, efficient, and fair resource sharing and information flow among
users and programs.

Major issues in operating systems

• concurrency —how are parallel activities created and controlled?

• sharing —how are resources shared among users?

• naming —how are resources named (by programs and users)

• protection —how is one user/program protected from another?



Operating Systems 3

• security —how to restrict information flow and prevent misuse?

• performance —why is it so slow?

• structure —how is an operating system organized?

• reliability and fault tolerance —how to handle failures

• extensibility —how do we add new features?

• communication —how and with whom can we communicate?

• scale and growth —what happens as demand and resources increase?

• persistence —how to make data last longer than programs

• distribution —how to integrate a world of information and resources?

• accounting —who does what, and how do we control resource usage?

Brief history of operating systems

• In the beginning, one user/program at a time, no overlap of computation and
I/O. OS first appeared as a subroutine library shared by all users.

• simple batch systems were first real OS:

– OS stored in part of main memory

– it loaded a single job (from card reader) into memory

– ran the job, printed its output, etc.

– loaded next job

• Spooling and buffering allowed jobs to be read ahead of time onto tape/disk
or into memory.

• Multiprogramming systems provided increased utilization

– multiple runnable jobs loaded in memory

– overlap I/O processing of one job with computation of another

– benefit from I/O devices that can operate asynchronously



Operating Systems 4

– requires use of interrupts/DMA

– tries to optimize throughput

• Timesharing systems support interactive use

– each user feels as if he/she has the entire machine (at least at at night)

– tries to optimize response time

– based on time-slicing —dividing available CPU time equally among the
users

– permits interactive work; participation of users in the execution process

– MIT Multics system was first large timesharing system (mid-late 1960s)

– requires periodic clock interrupts

• Distributed operating systems

– facilitate use of geographically distributed resources

– supports communication between parts of a job or different jobs

– sharing of distributed resources, hardware and software

– permits parallelism, but speedup is not necessarily the main objective

– not covered in this course—check out Distributed Systems course

• Characteristics of current OS’es:

– Large

∗ Tens of millions of source lines of code (SLOC)

∗ Tens of thousands of person-years

– Complex

∗ asynchronous

∗ concurrent/parallel

∗ abundance of hardware platforms with different idiosyncrasies

∗ conflicting needs of different application programs and users

∗ performance and dependability are crucial



Operating Systems 5

What we’ll cover in this course

• Process management

– Threads and processes

– Synchronization

– Multiprogramming

– CPU Scheduling

– Deadlock

• Memory management

– Dynamic storage allocation

– Sharing main memory

– Virtual memory

• I/O management

– File storage management

– Naming

– Concurrency

– Performance

• Advanced topics (based on research papers)

– Virtual machines

– Multi-core (OS structure, scalability)

– Weak memory models

– Energy management

– Distributed systems


