
Filesystem 
Reliability

OS Lecture 18
UdS/TUKL WS 2015

MPI-SWS 1



What could go wrong?
Expectation: stored data is persistent and correct.

1. Device failure:

» disk crash (permanent failure)

» bit flips on storage medium (What about host memory?)

» transient or permanent sector read errors

1. OS crash or power failure during filesystem manipulation

2. Accidental data deletion/corruption by users.

3. Malicious tampering by attacker.

MPI-SWS 2



Last Line of Defense: 
Backups!
Good regular backups can help with all of these issues.

» Once a day or more frequently to limit data loss.

» Need a history of backups, not just latest snapshot 
(➞ bit errors, human error, attacks).

» Backups should not be reachable from host, even 
if fully compromised (➞ attacks).

» Downside: restoring from backup can be very slow.

MPI-SWS 3



Dealing with Human Error
Accidental data deletion or corruption due to 
configuration errors or software bugs.

» Snapshotting filesystem: filesystem takes a (readonly) "snapshot" 
at regular intervals (e.g., every 24h).

» copy-on-write makes this relatively cheap

» Examples: ZFS, btrfs (Linux), HAMMER (DragonflyBSD)

» Versioning filesystem: every file version is retained for some time 
(e.g., last 30 days)

» Similar to Dropbox, but part of the low-level FS (➞ efficiency)

» Example: HAMMER retains a version every 30-60 seconds on sync

MPI-SWS 4



Dealing with Device Failures (1/3)

Partial failures: bit rot (= bit flips), bad sectors, and 
transient read errors.

» Bit rot: aging effects and electro-magnetic 
interference (EMI) can corrupt data on disk
➞ silent read errors

» Individual sectors of a disk can fail
➞ explicit read errors

» Detection: associate checksum with each block

» Mitigation: error-correcting codes, redundant blocks

MPI-SWS 5



Dealing with Device Failures (2/3)

Total device failures: disk crashes, controller failures,…

» Mirroring: store every block on multiple disks

» Advantages:

» very effective: works as long as at least one disk survives

» reads can be faster than on single disk because parallel reads can 
be dispatched to different (or multiple) mirror disks

» Disadvantages:

» capacity exposed to FS limited to smallest drive

» expensive

» synchronous writes can be slower than on single disk because all 
disks must finish write

MPI-SWS 6



Dealing with Device Failures (3/3)

Can we do better than mirroring?

» RAID: Redundant Array of Independent Disks
➞ originally: Inexpensive disks (Patterson et al., 1988)

» Goal: combine many not so fast, not so reliable disks into 
one logical volume that is faster and/or more reliable.

» Many different RAID levels exist can be nested and 
combined

» Standard levels: 0-6

» many vendor-specific variants exist

MPI-SWS 7



RAID 0 — Striping
Idea: distribute writes across all disks simultaneously

» with d disks, write block n to disk n mod d

» This makes the disk array less reliable: data loss if any 
disk fails

» But the array is (up to) d times faster than a single disk

» logically sequential write or read of d+ blocks = 
parallel write/read

» random reads/writes likely go to different disks

» Full capacity of all disks available

MPI-SWS 8



RAID 5 — Block-level Parity
Idea: use parity bits to recover lost blocks

» With d disks, for every d - 1 blocks, write one parity block.

» Distribute parity blocks across all disks
➞ Why?

» Can tolerate loss of any one disk
➞ Replace and rebuild array before next one fails

» Reads: almost as fast as RAID 0 (parallelized)

» Writes: faster than a single drive, but not as fast as RAID 0

» Capacity: (d-1)/d of total disk space available

MPI-SWS 9



Other RAID Levels
» RAID 1: just another name for mirroring

» can be combined to form RAID 1+0
➞ striped across mirrored disks

» RAID 2: stripe at byte level with error-correcting code

» RAID 3: stripe at byte level with dedicated parity disk

» RAID 4: stripe at block level with dedicated parity disk

» RAID 6: like RAID 5, but with two (different) parity blocks 
for every d - 2 blocks
➞ can tolerate two disk crashes
➞ Why is this becoming more important?

MPI-SWS 10



Dealing with Crashes
What if the OS crashes / the system loses power in the 
middle of a filesystem update?

How do we achieve crash consistency?

1. Run a tool to check for and repair 
inconsistencies on next boot (➞ fsck)

2. Keep a log of ongoing operations (➞ journaling)

3. Order all disk writes such that version on disk is 
always consistent (➞ soft updates)

MPI-SWS 11



fsck — filesystem check
After a crash, run a tool to repair the filesystem.

» Approach: read entire filesystem, find all 
inconsistencies, guess correct state and fixup

» Limitations: cannot detect and/or fix all 
inconsistencies

» Inefficient: very, very slow on large disks

» With large RAIDs, fsck run can easily take more 
than 24h…

MPI-SWS 12



Write-Ahead Logging / Journaling

Idea: keep a log of ongoing operations.

» Special area on disk (or second disk/SSD) that holds records 
describing in-flight operations.

» Write-ahead logging:

1. journal: write record in log (blocks to write)

2. journal: write completion record
➞ How to combine this step with the first write?

3. checkpoint: perform updates in place

» After a crash, replay completed operations.

» Data journaling vs. meta-data journaling

MPI-SWS 13


