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Naming Files
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Recall: inodes
What is an inode?

» the data structure of a filesystem representing 
a byte stream (= a file) on stable storage

How are inodes addressed?

» by index in a filesystem-specific table

» low-level implementation fact

» We need to map human-readable names to 
inodes.
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Mapping Names to Files
/home/bbb/notes.txt ➞ [inode A]

../etc/my-server.conf ➞ [inode X]

/srv/production/etc/my-server.conf ➞ [inode B]

/srv/testing/etc/my-server.conf ➞ [inode C]
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Historic Developments
Mapping: human-readable name ➞ inode

The beginning: a single, flat table
➞ one lookup table for the whole system

Towards directories: per-user lookup tables
➞ separate, flat namespace for each user

Proper directories: Multics directory tree
➞ popularized by UNIX
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Practical Challenges
1. running multiple instances of the same 

application
➞ absolute and relative filenames

2. multiple names for the same file
➞ hardlinks and symlinks

3. multiple disks
➞ mount points

4. multiple filesystem types
➞ virtual file system (VFS) layer
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Absolute vs. Relative Names

Absolute name: e.g., /home/bbb/notes.txt

» unambiguously identifies a file

» start name resolution at filesystem root
➞ ‘/’ is the root directory, traditionally inode 2

Relative name: e.g., ../etc/my-server.conf

» identifies a file in context of calling process

» start name resolution at current working directory
➞ .. means parent directory (= go up one level)
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Current Working Directory (CWD)

» used to resolve relative filenames

» POSIX: one CWD per process (not per thread)

» inherited from parent at fork

» cd in shell = “change directory” (= set CWD)

» processes launched from shell “start 
running in the current directory”
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chroot()
Change root — change the meaning of /.

» Can be used to restrict a process to a subtree of the 
filesystem.

» Files that are not children of the new root become 
effectively “invisible”.

» Example: chroot(“/tmp/sandbox”)

» ensures that the call open(“/foo/bar”, …) is effectively 
interpreted as open(“/tmp/sandbox/foo/bar”, …)

» Note: by itself, this is not a security feature.
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Implementation (UFS)
How are directories stored on disk?

» Just as regular files!

» A directory is just a file that contains a table of 
name ➞ inode mappings.

» Each “directory file” consists of chunks, where 
each chunk is small enough (512 bytes) to be 
written with a single I/O operation (➞ atomicity).

» Each chunk contains variable-size file records.
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Unix FS Directory Contents Records

#define MAXNAMLEN   255
struct  direct {
    u_int32_t d_ino;        /* inode number of entry */
    u_int16_t d_reclen;     /* length of this record */
    u_int8_t  d_type;       /* file type */
    u_int8_t  d_namlen;     /* length of name */
    char      d_name[MAXNAMLEN + 1];
};

On disk, d_name is not actually 256 bytes long, but 
variably sized to a multiple of 4 bytes to hold the 
name plus any trailing free space.

MPI-SWS 11



Record and Chunk Invariants

1. The sum of all the lengths of all struct direct 
records in a chunk always adds up to the 
chunk’s size.

» Any trailing free space after a record is added 
to the record’s d_reclen.

2. No struct direct record crosses any chunk 
boundary (➞ atomicity).

3. At most one chunk is modified as part of a single 
operation (➞ atomicity).
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Name Lookup
Lookup is a very common operation and must be fast.

» Sequentially scan all chunks. For each record,

» first compare length of name (d_namelen),

» then byte-wise compare d_name field.

» Important optimization: start next search 
where last finished. Why? (Hint: think of ls -l)

» What about directories with large numbers of 
entries?
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To delete a directory entry
1. Sequentially scan all chunks to find a struct direct record 

with matching name (error if not found)

» let to_del denote the to-be-deleted record

2. If to_del is not the first in the chunk, add the length of 
to_del to the predecessor

» let pred denote the predecessor of to_del:
pred->d_reclen += to_del->d_reclen;

3. Otherwise, set to_del->d_ino to 0
(i.e., a special value indicating “invalid record”).

4. Write chunk containing to_del to disk.
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To create a new directory entry

1. Sequentially scan all chunks to see if name is 
already taken (return error if so)

2. Keep track of total free space in each chunk. 
Note: free space may be fragmented.

3. Find first chunk into which new struct direct 
will fit (or append a new chunk).

4. If necessary, rewrite chunk to coalesce free space.

5. Write new entry into free space (setting d_reclen 
to occupy the free space) and write chunk to disk.
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Path resolution & lookup
How to resolve a path such as /a/b/c?

1. Load root directory (/) from disk.

2. Lookup directory named “a” in root directory to find inode of 
a.

3. Load a directory from disk.

4. Lookup directory named “b” in a directory to find inode of b.

5. Load b directory from disk.

6. Lookup entry named “c” in b directory to find inode of c.

7. Return c.
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Path resolution & lookup
General approach:

1. Split pathname into list of path components

2. set cursor to root directory if first component is /; otherwise 
start at CWD.

3. While list of path components is not empty:

» remove head (= first element) from list

» cursor ← lookup head in directory represented by cursor

» if not found return error

4. return cursor
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Names ≠ Files!
» A directory entry links a name to an inode

» The directory entry itself is not the file, just a name of the 
file. Rather, inodes represent files (i.e, are files).

» Multiple directory entries can link to the same file.
➞ A single file can have many names.

» The (single) inode contains all relevant per-file metadata 
(permission bits, access times, creation times, etc.)

» inodes are reference-counted: the number of times it is 
referred to in any directory

» A file is “deleted” when the reference count drops to zero.
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Hard Links
» A hard link is just a directory entry as discussed 

so far: association of a name with an inode.

» A hard link prevents a file from being deleted 
(i.e., it counts towards the inode’s reference 
count).

» Regular files may have multiple incoming links 
(many names for the same byte stream).

» Directories may not have multiple incoming 
hard links. Why?
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Hard Links — Example (1/2)
$ echo -n “Hello” > a.txt
$ ln a.txt b.txt # creating a hard link
$ cp a.txt c.txt # create a **copy**

Observe: a.txt and b.txt refer to the same inode, 
but c.txt does not.

$ ls -i a.txt b.txt c.txt # print inode
9239376 a.txt   9239376 b.txt   9240275 c.txt
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Hard Links — Example (2/2)

Observe: a.txt and b.txt are equivalent.

$ echo “ World” >> b.txt
$ cat a.txt
Hello World
$ rm a.txt
$ cat b.txt
Hello World
$ cat c.txt
Hello
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Soft (or Symbolic) Links, 
aka Symlinks
» A soft link is a file that redirects to another 

filename: an association of two names.

» In contrast to a hard link, a soft link does not 
affect the reference count of the target.

» In fact, target may not even exist.

» The target may reside on another filesystem 
and may be a directory.
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Lookup with Symlinks
» On disk, symlinks are simply short files that contain a 

pathname.

» At each step during pathname resolution, check if cursor 
points to a symlink.

» If so, read symlink and prepend contents to list of path 
components.
➞ What about cycles?

» To deal with potential cycles, a finite number of 
symlinks is traversed by the lookup code before 
returning ELOOP error. ➞ Why not do the same for hard links?
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Symlink Example (1/2)
$ mkdir -p a/b/c/d/e/f/g/h/i/j/k/l/m/n
$ mkdir -p x/y/z
# Create a symlink named “shortcut” in x/y/z to “n”
$ (cd x/y/z; ln -s ../../../a/b/c/d/e/f/g/h/i/j/k/l/m/n shortcut)
$ echo “Hello” > a/b/c/d/e/f/g/h/i/j/k/l/m/n/msg.txt
$ cat x/y/z/shortcut/msg.txt
Hello
$ echo “there.” >> x/y/z/shortcut/msg.txt
$ cat a/b/c/d/e/f/g/h/i/j/k/l/m/n/msg.txt
Hello
there.

Observe: appears to work just like a hard link, but x/y/z/
shortcut/ points to a directory (impossible with hard links).
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Symlink Example (2/2)
$ rm a/b/c/d/e/f/g/h/i/j/k/l/m/n/msg.txt
$ cat x/y/z/shortcut/msg.txt
cat: x/y/z/shortcut/msg.txt: No such file or directory
$ ls -l x/y/z
total 8
lrwxr-xr-x  1 bbb  wheel  36 Jan  2 22:10 shortcut
    -> ../../../a/b/c/d/e/f/g/h/i/j/k/l/m/n

Observe: symlink still exists, but now points to a 
non-existent target (unlike hard links).
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Symlink: ELOOP Example
$ mkdir x
$ mkdir y
$ ln -s '../y/foo' x/foo
$ ln -s '../x/foo' y/foo
$ ls -l x/foo y/foo
[…] x/foo -> ../y/foo
[…] y/foo -> ../x/foo
$ cat x/foo
cat: x/foo: Too many levels of symbolic links

Observe: the mutually recursive symlinks exist in the filesystem 
as intended, but open() returns ELOOP error.
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Multiple Disks (1/3)
Can filesystems span multiple disks?

» Traditionally, physical disks are managed 
independently: filesystems such as FFS/UFS, Ext2, 
XFS, JFS, HFS+ do not span across disks at the 
implementation level.

» Instead, a merged view of filesystems on multiple 
disks is provided by the kernel by mounting them as 
subtrees of the root filesystem.

» In Microsoft OSs, separate filesystems traditionally 
have separate roots (C:, D:, …).
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Multiple Disks (2/3)
With logical volume mangement (LVM), multiple smaller block 
devices can be made to appear as one large virtual device.

» LVM inserts a layer of indirection between the filesystem and 
the actual physical block devices.

» LVM manages multiple disks, hiding them from the rest of 
the system. Instead, it presents a large, idealized, contiguous 
volume (= virtual disk) to the filesystem.

» This allows classic filesystems such as FFS/UFS, ext2, etc. to 
be used across multiple disks.

» LVM can also provide redundancy (RAID), on-the-fly 
encryption, etc.
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Multiple Disks (3/3)
ZFS comes with its own LVM.

» ZFS is targeted at truly large, highly available 
filesystems, which inherently requires the use of 
multiple block devices.

» Instead of relying on an underlying LVM layer, ZFS 
itself has its own notion of storage pools that bundle 
multiple block devices into a single virtual device.

» ZFS also (optionally) provides compression, 
encryption, block de-duplication, replication, …
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Using Multiple Filesystems
Despite LVM, OSs often use multiple separate 
filesystems (aka partitions, slices, or volumes). Why?

» simple way to use multiple block devices

» isolation: don’t allow user directories (/home), log 
files (/var/log), or temporary files (/tmp) to fill up 
system partition (/); can also isolate I/O bandwidth.

» specialization: use an FS that’s good for large files 
for archive directory (e.g., XFS), but FS that’s good for 
many small files for user directories (e.g., ReiserFS).
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Mount Points
The kernel provides a single hierarchical namespace despite 
separate physical filesystems.

» Mounting a filesystem means making it available as a 
subdirectory of another, already mounted filesystem.

» Example: mount /dev/sdb0 /mnt/usbstick

» makes filesystem on device /dev/sdb0 (a device file) 
available as a subtree starting at /mnt/usbstick

» Any pre-existing files of the original FS below the mount 
point (= directory where a filesystem is mounted) are 
hidden by the newly mounted FS.
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VFS: inodes vs. vnodes
The kernel must transparently deal with multiple filesystem types.

» Original UNIX filesystem implementation (e.g., name 
lookup) dealt directly with inodes.

» But inodes are low-level, highly FS-specific detail.

» Should each filesystem re-implement name lookup? No! 
➞ Need a single, higher-level implementation: the VFS.

» The virtual filesystem (VFS) layer operates on vnodes, an 
abstract interface that encapsulates FS-specific inodes. 
Lookup works as before, except that actual parsing of 
on-disk data is delegated FS-specific methods.

MPI-SWS 32



Everything is a file (1/3)
Almost anything can be exposed via the VFS…

» procfs — list processes and their properties as 
files under /proc

» devfs — represent physical devices as device 
files under /dev

» fdesc — represent open file descriptors of 
calling process as files (e.g., /dev/fd/0 is an 
alias for STDIN. Try cat /dev/fd/0.)
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Everything is a file (2/3)
» tmpfs (Linux) — RAM-based, temporary 

filesystem

» debugfs (Linux) — exposes kernel data 
structures for debugging

» sysfs (Linux) — exposes kernel configuration 
data and settings, and hardware details

» Plan 9 exposes networking via FS namespace
➞ /net/tcp/ and /net/udp/
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Everything is a file (3/3)
Can delegate parts of the filesystem namespace to user-level 
processes (i.e., drivers in userspace)

» FUSE (file system in userspace) provides easy way to 
implement custom filesystems
➞ e.g., in Python!
➞ sshfs, GMailFS, mysqlfs, WikipediaFS, …

» Similar functionality originally offered by portals in 
4.4BSD.

» Standard way of implementing any filesystem on top 
of microkernels.
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File system APIs
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Read/Write Primitives
How to read from and write to files?

» Explicitly: read() and write() system calls, the 
classic, simple approach

» Implicitly: via memory-mapped files with 
mmap(), which can be a more efficient approach
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read() Overview (1/2)
» Process opens file handle with open():

➞ VFS layer performs name lookup, associates file 
descriptor (in the process file descriptor table) with a 
vnode, which in turn abstracts a filesystem-specific 
inode

» Process allocates buffer space (in user space)

» Process issues read() system call with pointer to 
buffer

» VFS layer triggers vnode’s read() method (if not 
cached)
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read() Overview (2/2)
» actual FS allocates buffer for block I/O (in kernel 

space)

» actual FS uses inode info to request block read from 
disk

» when I/O operation completes (interrupt), VFS copies 
data from block I/O buffer to process-provided buffer 
in user space

» read() system call returns

» write() works like read(), just in the reverse direction
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seek() vs. absolute offset
» UNIX read()/write() work at implicit position 

of file

» makes sequential access easy, but “jumps” to 
other offset require explicit seek() call

» alternative: pass offset explicitly as argument 
to pread()/pwrite(), which do not modify 
implicit file pointer
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Vectored I/O
pwritev() and preadv()

» useful if data is to be read to / to be written from 
many small buffers that are scattered throughout 
the user address space

» to reduce system call overhead, the process 
provides vector of (buffer ptr, length) 
descriptors

» the VFS layer fills/writes the buffers in sequence
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Discussion
Explicit I/O is straightforward, but has some downsides.

» Copy overhead: data is explicitly copied 
between kernel buffer and user buffer.

» System call overhead: can become significant 
for frequent short reads/writes

» Double paging: user buffer may be paged out
➞ two redundant copies of data on disk.
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Memory-Mapped Files
In UNIX/POSIX, a file’s contents can be directly mapped into user 
space with mmap().

» After mapping, any page fault in mapped address range 
will be handled by reading corresponding page from file.

» To read from the file, the process simply loads from the 
mapped addresses.

» To write to the file, the process simply stores to the 
mapped addresses.

» Kernel will (eventually) flush dirtied pages back to disk 
(unless explicitly prevented from doing so).
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Advantages of mmap()
» no double-paging

» no copying

» no system call overhead (after initial setup)

» if two or more processes map the same file
➞ shared memory segment
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Controlling Sharing
Sometimes, modifications should not be written to disk.

» MAP_PRIVATE — do not write modifications back 
to the file (copy-on-write semantics)

» MAP_SHARED — modifications are immediately 
visible to other processes

» even if they use read()
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Other mmap() Variants and Options

mmap() and madvise() allow fine-grained control

» MAP_ANONYMOUS (Linux) or MAP_ANON (BSD) — not backed by file, 
initialized to zero (e.g., used to implement malloc())

» MAP_HUGETLB (Linux) — use large pages (fewer TLB entries)

» MAP_LOCKED (Linux) — do not page out

» MAP_GROWSDOWN (Linux) — used for stacks

» MAP_POPULATE (Linux) — pre-page (don’t wait for page faults)

» MAP_NOSYNC (FreeBSD) — don’t regularly write dirty pages to disk

» VM_FLAGS_PURGABLE (Mach, OS X) — volatile cache
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File Locking
Concurrent access to shared files poses the risk of race conditions.

Example: one process updating a configuration file or 
system database, while another process is reading it.
How to synchronize?

» In case of mmap(), can place a semaphore in the file (= 
shared memory segment) itself. Limitations?
(➞ MAP_HASSEMAPHORE on *BSD)

» Ad-hoc solution: recall that creating a hard link (= name 
creation) is atomic: to “lock”, create an empty lock file; to 
“unlock”, unlink the lock file. Why is this not a great idea?
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Explicit File Locking API
To let processes synchronize efficiently on files without resorting 
to busy-waiting or unconditional sleeps.

» 4.2BSD, 4.3BSD: whole-file locking primitive

» lock inherited across fork()

» lock automatically released on (last) close()

» design choice: mandatory vs. advisory locks

» mandatory locks are enforced by kernel;
advisory locks can be ignored by userspace processes

» BSD adopted advisory locks. Why?
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POSIX Byte-Range Locks
In an attempt at improved flexibility & efficiency, POSIX adds 
advisory byte-range locks.

» Can lock arbitrary byte ranges: offset + length.

» Can acquire shared or exclusive locks (➞ reader/writer 
synchronization).

» No overlapping, exclusively locked byte ranges 
permitted.

» Questionable success: rarely used in practice, not powerful 
and fast enough for serious databases, but adds 
substantial implementation complexity in compliant kernels.

MPI-SWS 49



Filesystem 
Caches
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Filesystem Caches
» Name cache: path lookup results

» resolving a long path (e.g., a/b/c/e/…/z) requires loading 
the contents of many directories ➞ many seeks

» locality principle: often, the same name is reused many 
times (e.g., shell scripts, config files, $PATH search, etc.)

» Buffer cache: file contents

» reads: avoid re-reading the same file (➞ locality)

» writes: combine many small writes to single disk write

» Write cache: memory-based cache on disk controller

» should be transparent to OS, but can be buggy…
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Name Cache
Essential for acceptable name resolution.

» When a translation succeeds, cache successful 
name➞vnode lookup in name cache.

» When a translation fails, place negative lookup 
result in name cache. Why is this important?

» Obviously, much care must be taken to invalidate 
stale entries (based on either vnode or name).

» The name cache is complementary to directory 
hashing (or to storing directories as B-trees).

MPI-SWS 52



Buffer Cache
Cache file contents in memory.

» Classic UNIX: a separate, fixed-size memory 
pool created at boot time.

» strictly separate from memory pool for VM

» Modern approach: unified I/O and VM pool

» makes MAP_SHARED + read() a lot easier

» MAP_ANONYMOUS vs. VM memory: little 
difference
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Example: FreeBSD Buffer Cache Operations (1/2)

Acquiring and releasing buffers:

» bread(): given a vnode, an offset (in blocks), and 
a read length, return a locked buffer (filled with 
file contents) ➞ uses FS-specific I/O method

» brelse(): release a clean buffer, wake any 
waiting threads

» bqrelse(): like brelse(), but don’t yet reclaim, 
as reuse is expected
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Example: FreeBSD Buffer Cache Operations (2/2)

Write back dirty buffers:

» bdwrite(): delayed write — buffer is queued for 
writing, but may be delayed by 20-30 seconds to 
accumulate later writes to same page(s)

» bawrite(): asynchronous write — called when a 
buffer is filled completely and no more writes 
expected

» bwrite(): synchronous write — caller must wait 
until write has completed (e.g., used for fsync)
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FreeBSD Buffer Queues
All buffers are kept on one of four queues:

1. dirty list: changes must still be persisted. Maintained in LRU 
order: frequently accessed blocks are likely to stay at tail; 
buffer daemon writes back pages from beginning of list.

2. clean list: blocks not currently in use, but expected to be 
used soon (bqrelse()). Maintained in LRU order. When the 
clean list becomes empty, buffer daemon is triggered.

3. empty list: unused metadata without associated buffer 
memory; ready for reuse.

4. locked list: buffers that are currently being written.
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Speculative Caching
Can the buffer cache help with files that are accessed only 
once?

» Read-ahead: when a process reads some blocks of 
a file, automatically queue additional I/O ops for 
subsequent blocks. ➞ Expectation: process is going to 
request them soon anyway.

» Write-behind: don’t make application wait until 
its writes have actually been written to disk. ➞ 
Allows process to compute next writes while data is still 
being transferred.
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The Buffer Cache Problem
Cache is stored in fast volatile memory ➞ lost on power failure or OS crash.

1.  Write-through cache
➞ all writes synchronously written to disk
➞ cache helps only with reads

2.  Write-through only FS metadata
➞ maintains FS consistency, but risks losing (seconds of) user 
data
➞ classic UNIX Approach; still slow for FS-intensive workloads

3. write-ahead logging: maintain log in fast, non-volatile memory (or 
on separate disk): widely used today

4. soft updates: carefully order updates such that version on disk is 
always consistent (FreeBSD)
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