
Operating Systems 110

25 Naming: Directories

Naming: how do users refer to their files? How does OS find file, given name?

Users need a way of getting back to files that they leave around on disk. One
approach is just to have users remember file descriptor indexes (e.g., i-node

numbers).

Of course, users want to use text names to refer to files. Special disk structures
called directories are used to tell what descriptor indices correspond to what

names.

Approach #1: have a single directory for the whole disk. Use a special area of
disk to hold the directory.

• Directory contains <name, index> pairs.

• If one user uses a name, no-one else can.

Many early computers worked this way.

Approach #2: have a separate directory for each user (TOPS-10 approach). This
is still clumsy: names from a user’s different projects get confused.

Unix (originally Multics) approach: generalize the directory structure to a tree.

• Directories are stored on disk just like regular files (i.e. file descriptor with
14 pointers, etc.) except file descriptor has special flag bit set. User
programs can read directories just like any other file (try it!). Only special

system programs may write directories.

• Each directory contains <name, fd index> pairs in no particular order. The

file pointed to by the index may be another directory. Hence, get hierarchical
tree structure. Names have slashes separating the levels of the tree.

• There is one special directory, called the root. This directory has no name,
and is the file pointed to by descriptor 2 (descriptors 0 and 1 have other

special purposes). Go through lookup example: /a/b/c.



Operating Systems 111

It is possible for more than one directory entry to refer to a single file (“hard

links”). UNIX uses reference counts in the file descriptors to keep track of the
directory entries, only delete file when last directory entry goes away.

Other things kept in UNIX file descriptors: file size, access times, owner and

group id, protection bits.

It is very nice that directories and file descriptors are separate, and that
directories are implemented just like files. This simplifies the implementation and

management of the structure (can write “normal” programs to manipulate them
as files).

Working directory: it is cumbersome constantly to have to specify the full path

name for all files.

• In Unix, there is one directory per process, called the working directory,
which the system remembers.

• When it gets a file name, it assumes that the file is in the working directory.
“/” is an escape to allow full path names.

• This is yet another example of locality.

• Many systems allow more than one current directory. For example, check

first in A, then in B, then in C. This set of directories is called the search
path or search list. This is convenient when working on large systems with

many different programmers in different areas.

• For example, in Unix the shell will automatically check in several places for
programs. However, this is built into the shell, not into Unix, so if any other

program wants to do the same, it has to rebuild the facilities from scratch.
Should be in the OS.

• C-shell implements “˜”.

Symbolic links: a file whose contents are just another file name. Also stored on
disk just like regular files, but with a special flag set in descriptor.

Why support both symbolic links and hard links?



Operating Systems 112

• Consider hard links that may point to directories: May get cyclic directory

graphs:

– have to take care to avoid infinite loops during directory searches.

– potential for unreachable directory subgraphs (cycles of garbage.)

• Unix solution, part 1: users can create hard links to plain files only
(superuser can create hard links to directories.)

• Unix solution, part 2: provide symbolic links (“soft links”) for convenience.

• Symbolic links may refer to directories and may thus form general graphs
(cycles!).

– since symbolic links are special, can avoid infinite loops by ignoring or
limiting the number of symbolic link traversals during directory searches.

– since symbolic link references are unaccounted, no danger of garbage

cycles.

– symbolic links can refer to directories in other file systems, which may
reside on different disks (and even on different computers connected by
networks.)

∗ can build global namespaces

What if a systems has multiple filesystems (potentially on multiple disks)?

• system boots from primary boot partition on primary disk (configuration

parameter)

• in UNIX systems:

– root directory in boot partition becomes “/”

– other filesystems are “mounted” into the namespace

– for instance: (assume /dev/rz1a is boot partition)

∗ mount /dev/rz1b /usr1

∗ mount /dev/rz2a /usr2

∗ mount /dev/rz2b /usr3

• in Microsoft systems:



Operating Systems 113

– each filesystem is assigned a “drive letter” in range [A-Z]

– drive letter, followed by “:” is prepended to filename

• in ZFS:

– system admins can add any number of block devices to a single filesystem

– no need to mount different filesystems into a single namespace


