
78

16 Shared Virtual Memory, COW, DSM

Readings for this topic: Siberschatz/Galvin, Chapter 9

We’ve seen that dynamic relocation provides flexibility in managing physical
memory and allows us to virtualize main memory. Next, we’ll study additional
uses of the dynamic relocation hardware.

Shared virtual memory: Map virtual address ranges in different processes to
the same physical memory range. This works with all dynamic relocation
hardware. What is it good for?

1) Shared code or shared read-only data segments: when an OS runs several
instances of the same program, can save physical memory by mapping the code
segments of each process to one copy of the code segment in physical memory.
Since code segments are normally read-only, it is safe to do this. The same can be
done for initialized data segments that are read-only.

2) Shared memory segments: when two cooperating processes want to share a
region of their virtual address space to coordinate or exchange data. Note that
such processes need to synchronize, just like threads in a single process.

Copy-on-write: Suppose we would like to save even more physical memory by
using only a single copy in physical memory for multiple instance of the same
program whenever possible. Note that this sharing must be transparent to the
processes, i.e., when a process writes a page, these changes must not be visible to
the other processes.

Idea: create multiple physical copies of a page lazily and only when needed.
Initially, share a single physical page for each of the program’s pages among all
instances, but mark the pages as read-only. When a process writes into a page, a
page fault happens. The OS then allocates another physical page, initializes the
page with a copy of the original page’s data, enables writes and then returns from
the page fault.

If a process writes into all of its pages, then the OS must eventually allocate a
private copy of each page and nothing is gained. However, most programs only
modify some of their memory.



Operating Systems 79

Modern UNIX/Lnux implementations use COW to implement the fork() system
call efficiently. (fork() creates a child process that is initially an exact copy of
the parent process). Initially, the child process all of its pages mapped to the
same pages as the parent process. If either of the processes subsequently writes a
page, a phycial copy is created.

Distributed shared memory: Suppose we’d like to write a multi-threaded
program that can take advantage of the CPUs in multiple machines connected by
a fast network. Create a virtual address space that spans multiple machines with
separate physical memories.

In the simplest implementation, each page has a single physical memory page
that is located on one of the computers at any given time. If the page is accessed
on a different machine, a page fault happens, upon which the OS fetches the page
across the network. As an optimization, copies of the same page can exist on
multiple machines; only when the page is written do we have to make sure that
the changes are send to all copies in a manner that preserves the consistency of
the shared memory.


