
70

15 Demand Paging, Thrashing, Working Sets

Readings for this topic: Siberschatz/Galvin, chapter 9

So far we have separated the programmer’s view of memory from the system’s
view using a mapping mechanism. Each sees a different organization. This makes
it easier for the OS to shuffle users around and simplifies memory sharing between
users.

However, until now a user process had to be completely loaded into memory
before it could run. This is wasteful since a process only needs a small amount of
its total memory at any one time (locality). Virtual memory permits a process to
run with only some of its virtual address space loaded into physical memory.

Virtual address space, translated to either
a) physical memory (small, fast) or
b) disk (backing store), which is large but slow. Identify physical page frames
and backing frames.

The idea is to produce the illusion of a disk as fast as main memory.

The reason that this works is that most programs spend most of their time in
only a small piece of the code. Knuth’s estimate of 90% of the time in 10% of
the code. Recall principle of locality.

If not all of process is loaded when it is running, what happens when it references
a byte that is only in the backing store? Hardware and software cooperate to
make things work anyway.

• First, extend the page tables with an extra bit “present”. If present isn’t set
then a reference to the page results in a trap. This trap is given a special
name, page fault.

• Any page not in main memory right now has the “present” bit cleared in its
page table entry.

• When page fault occurs:

– Operating system brings page into memory

– Page table is updated, “present” bit is set.



Operating Systems 71

– The process continues execution.

Continuing process is potentially tricky, since page fault may have occurred in the
middle of an instruction. Don’t want user process to be aware that the page
fault even happened.

• Can the instruction just be skipped?

• Suppose the instruction is restarted from the beginning?

– How is the “beginning” located?

– Even if the beginning is found, what about instructions with side effects,
like MOVE (SP)+, R2?

• Without additional information from the hardware, it may be impossible to
restart a process after a page fault. Machines that permit restarting must
have hardware support to keep track of all the side effects so that they can
be undone before restarting.

• If you think about this when designing the instruction set, it isn’t too hard
to make a machine virtualizable. It’s much harder to do after the fact.

– VAX is example of doing it right.

– RISC (load-store) architectures make this relatively easy. Only
instructions that can generate page faults are load and store.

Once the hardware has provided basic capabilities for virtual memory, the OS
must make two kinds of scheduling decisions:

• Page selection: when to bring pages into memory.

• Page replacement: which page(s) should be thrown out, and when.

Page selection Algorithms:



Operating Systems 72

• Demand paging: start up process with no pages loaded, load a page when a
page fault for it occurs, i.e. wait until it absolutely MUST be in memory.
Almost all paging systems are like this.

• Request paging: let user say which pages are needed. What’s wrong with
this? Users don’t always know best, and aren’t always impartial. They will
overestimate needs. Overlays are even more draconian than request paging.

• Prepaging: bring a page into memory before it is referenced (e.g. when one
page is referenced, bring in the next one, just in case). Hard to do effectively
without a prophet, may spend a lot of time doing wasted work.

Page Replacement Algorithms:

• Random: pick any page at random (works surprisingly well!).

• FIFO: throw out the page that has been in memory the longest. The idea is
to be fair, give all pages equal residency.

• MIN: as always, the best algorithm arises if we can predict the future.
Throw out the page that won’t be used for the longest time into the future.
This requires a prophet, so it isn’t practical, but it is good for comparison.

• LRU: use the past to predict the future. Throw out the page that hasn’t
been used in the longest time. If there is locality, then this is a good
approximation to MIN.

Example: Try the reference string A B C A B D A D B C B, assume there are
three page frames of physical memory. Show the memory allocation state after
each memory reference.

MIN is optimal (can’t be beaten), but the principle of locality states that past
behavior predicts future behavior, thus LRU should do just about as well.

Implementing LRU: need some form of hardware support in order to keep track of
which pages have been used recently.



Operating Systems 73

• Perfect LRU? Keep a register for each page, and store the system clock into
that register on each memory reference. To replace a page, scan through all
of them to find the one with the oldest clock. This is expensive if there are a
lot of memory pages.

• In practice, nobody implements perfect LRU. Instead, we settle for an
approximation that is efficient. Just find an old page, not necessarily the
oldest. LRU is just an approximation anyway so why not approximate a
little more?

Clock algorithm : keep “use” bit for each page frame, hardware sets the
appropriate bit on every memory reference. The operating system clears the bits
from time to time in order to figure out how often pages are being referenced.
Introduce clock algorithm where to find a page to throw out the OS circulates
through the physical frames clearing use bits until one is found that is zero. Use
that one. Note clock analogy.

Some systems also use a “dirty” bit to give preference to dirty pages. This is
because it is more expensive to throw out dirty pages: clean ones need not be
written to disk. When the clock algorithm finds an unused but dirty page, it
schedules a disk write for the page and continues (i.e., the page gets a “second
chance” while it is being written to disk). On the next rotation of the clock, if the
page is still unused, it will now be “clean” and thus replaced.)

The “use” and “dirty” bits are implemented by the TLB: the hardware sets the
“use” bit upon each access to the page and the “dirty” bit upon each write to the
page. When a TLB entry is evicted, the bits are written to the corresponding
page table entry.

What does it mean if the clock hand is sweeping very slowly? (plenty of memory,
not many page faults, good)

What does it mean if the clock hand is sweeping very fast? (not enough memory,
thrashing, or threshold is too high)

Note: when contention for physical memory is high, there are many page faults
and the clock rotates fast; therefore, the clock algorithm has more fine-grained
information about recent page accesses and makes better replacement decisions.



Operating Systems 74

Three different styles of replacement:

• Global replacement: all pages from all processes are lumped into a single
replacement pool. Each process competes with all the other processes for
page frames.

• Per-process replacement: each process has a separate pool of pages. A page
fault in one process can only replace one of that process’s frames. This
relieves interference from other processes.

• Per job replacement: lump all processes for a given user into a single
replacement pool.

• In per-process and per-job replacement, must have a mechanism for (slowly)
changing the allocations to each pool. Otherwise, can end up with very
inefficient memory usage.

• Global replacement provides most flexibility, but least “pig protection”.

Thrashing: consider what happens when memory gets overcommitted.

• Suppose there are many users, and that between them their processes are
making frequent references to 50 pages, but memory has 49 pages.

• Each time one page is brought in, another page, whose contents will soon be
referenced, is thrown out.

• Compute average memory access time.

• The system will spend all of its time reading and writing pages. It will be
working very hard but not getting anything done.

• The progress of the programs will make it look like the access time of
memory is as slow as disk, rather than disks being as fast as memory.

• Thrashing was a severe problem in early demand paging systems.

Thrashing occurs because the system doesn’t know when it has taken on more
work than it can handle. LRU mechanisms order pages in terms of last access,
but don’t give absolute numbers indicating pages that mustn’t be thrown out.



Operating Systems 75

What do humans do when thrashing? If flunking all courses at midterm time,
drop one.

What can be done?

• If a single process is too large for memory, there is nothing the OS can do.
That process will simply thrash. Note course analogy.

• If the problem arises because of the sum of several processes:

– Figure out how much memory each process needs.

– Change scheduling priorities to run processes in groups whose memory
needs can be satisfied. Shed load.

Working Sets are a solution proposed by Peter Denning. An informal definition is
“the collection of pages that a process is working with, and which must thus be
resident if the process is to avoid thrashing.” The idea is to use the recent needs
of a process to predict its future needs.

• Choose tau, the working set parameter. At any given time, all pages
referenced by a process in its last tau seconds of execution are considered to
comprise its working set.

• A process will never be executed unless its working set is resident in main
memory. Pages outside the working set may be discarded at any time.

Working sets are not enough by themselves to make sure memory doesn’t get
overcommitted. We must also introduce the idea of a balance set:

• If the sum of the working sets of all runnable processes is greater than the
size of memory, then refuse to run some of the processes (for a while).

• Divide runnable processes up into two groups: active and inactive. When a
process is made active its working set is loaded, when it is made inactive its
working set is allowed to migrate back to disk. The collection of active
processes is called the balance set.



Operating Systems 76

• Some algorithm must be provided for moving processes into and out of the
balance set. What happens if the balance set changes too frequently? (Still
get thrashing)

As working sets change, corresponding changes will have to be made in the
balance set.

Problem with the working set: must constantly be updating working set
information.

• One of the initial plans was to store some sort of a capacitor with each
memory page. The capacitor would be charged on each reference, then would
discharge slowly if the page wasn’t referenced. Tau would be determined by
the size of the capacitor. This wasn’t actually implemented. One problem is
that we want separate working sets for each process, so the capacitor should
only be allowed to discharge when a particular process executes. What if a
page is shared?

• Actual solution: take advantage of use bits.

– OS maintains idle time value for each page: amount of CPU time
received by process since last access to page.

– Every once in a while, scan all pages of a process. For each use bit on,
clear page’s idle time. For use bit off, add process’ CPU time (since last
scan) to idle time. Turn all use bits off during scan.

– Scans happen on order of every few seconds (in Unix, tau is on the order
of a minute or more).

Other questions about working sets and memory management in general:

• What should tau be?

– What if it’s too large? System overestimates processes’ working sets,
therefore it underestimated balance sets, therefore the system may be
underutilized. (Can detect when both CPU and paging disk are not fully
utilized but there are processes in the inactive set; decrease tau
accordingly).



Operating Systems 77

– What if it’s too small? System understimates processes’ working sets,
therefore it overestimates balance sets, therefore the system may still
trash. (Can detect when the paging device is overloaded; increase tau
accordingly).

• What algorithms should be used to determine which processes are in the
balance set? (Some form of bin packing)

• How do we compute working sets if pages are shared between processes?
(Take into account when computing balance sets)

• How much memory is needed in order to keep the CPU busy? Note than
under working set methods the CPU may occasionally sit idle even though
there are runnable processes.

The issue of thrashing may be less critical for workstations than for timeshared
machines: with just one user, he/she can kill jobs when response gets bad. With
many users, OS must arbitrate between them.


