
1

1 Introduction

What is an operating system?

Layer of software between the hardware and application programs. Two
main functions:

• Resource manager

• Extended (abstract) machine

OS as resource manager

• mediator/coordinator: resolve conflicting resource demands

• protect users from each others (and from themselves)

• mechanisms and policies for control of resources, flow of information

OS as extended machine

• provides stable, portable, reliable, safe, well-behaved environment
(ideally)

• Magician: makes computer appear to be more than it really is

• Single processor appears like many separate processors

• Single memory made to look like many separate memories, each
potentially larger than the real memory



Operating Systems - Saarland University - Summer 2011 2

• Abstractions that are easier to program and reason about

Physical machine Extended machine

Processor(s) Threads
Memory Processes
Disks Files
Network adaptors Operating Comm. channels
Monitor System
Speaker
Microphone
Clock/Timer



Operating Systems - Saarland University - Summer 2011 3

What resources need to be managed?

• processor(s) (computation)

• main memory

• secondary memory (disks, tapes, CD-ROM)

• network links

• I/O devices (terminals, printers, audio, video)

OS must

• service all of these devices simultaneously,

• support safe, efficient, and fair sharing of resources among users and
programs.



Operating Systems - Saarland University - Summer 2011 4

Major issues in operating systems

• concurrency

• sharing

• naming

• protection

• security

• performance

• structure

• reliability and fault tolerance

• extensibility

• communication

• scale and growth

• persistence

• distribution

• accounting



Operating Systems - Saarland University - Summer 2011 5

Brief history of operating systems

• In the beginning, one user/program at a time, no overlap of
computation and I/O.

• simple batch systems were first real OS:

– OS stored in part of main memory

– it loaded a single job (from card reader) into memory

– ran the job, printed its output, etc.

– loaded next job

• Spooling and buffering

• Multiprogramming systems

– multiple runnable jobs loaded in memory

– overlap I/O processing of one job with computation of another

– benefit from I/O devices that can operate asynchronously

– requires use of interrupts/DMA

– tries to optimize throughput

• Timesharing systems

– each user feels as if he/she has the entire machine (at least at at
night)

– tries to optimize response time

– based on time-slicing

– permits interactive work;

– MIT Multics system was first large timesharing system (mid-late
1960s)

– requires periodic clock interrupts

• Distributed operating systems

– facilitate use of geographically distributed resources



Operating Systems - Saarland University - Summer 2011 6

– supports communication between parts of a job or different jobs

– sharing of distributed resources, hardware and software

– permits parallelism, but speedup is not necessarily the main
objective

– not covered in this course—check out Distributed Systems course



Operating Systems - Saarland University - Summer 2011 7

• Characteristics of current OS’es:

– Large

∗ Millions of lines source code

∗ 100-10,000 person-years

– Complex

∗ asynchronous

∗ concurrent/parallel

∗ abundance of hardware platforms with different idiosyncrasies

∗ conflicting needs of different application programs and users

∗ performance and dependability are crucial



Operating Systems - Saarland University - Summer 2011 8

What we’ll cover in this course

• Process management

– Threads and processes

– Synchronization

– Multiprogramming

– CPU Scheduling

– Deadlock

• Memory management

– Dynamic storage allocation

– Sharing main memory

– Virtual memory

• I/O management

– File storage management

– Naming

– Concurrency

– Performance

• Advanced topics (based on research papers)

– Virtual machines

– Multi-cores (OS structure, scalability)

– Energy management

– Distributed systems


