A Unified Approach to Quantifying Algorithmic Unfairness:

Measuring Individual & Group Unfairness via Inequality Indices

Till Speicher

joint work with

Hoda Heidari, Nina Grgic-Hlaca, Krishna P. Gummadi, Adish Singla, Adrian Weller, Muhammad Bilal Zafar

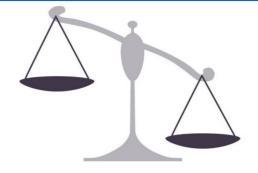
MAX PLANCK INSTITUTE FOR SOFTWARE SYSTEMS ETHZÜRICH CAMBRIDGE The Alan Turing

Algorithmic Decision Making

Algorithms assist and automate human decision making

Decisions have social implications

Potential for Unfairness



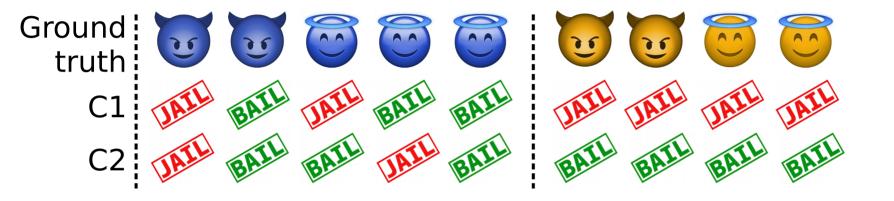
COMPAS: Recidivism risk prediction tool

Machine Bias

There's software used across the country to predict future criminals. And it's biased against blacks.

Risk of white defendants underestimated and risk of black defendants overestimated by algorithm

Unfairness in Recidivism Risk Prediction

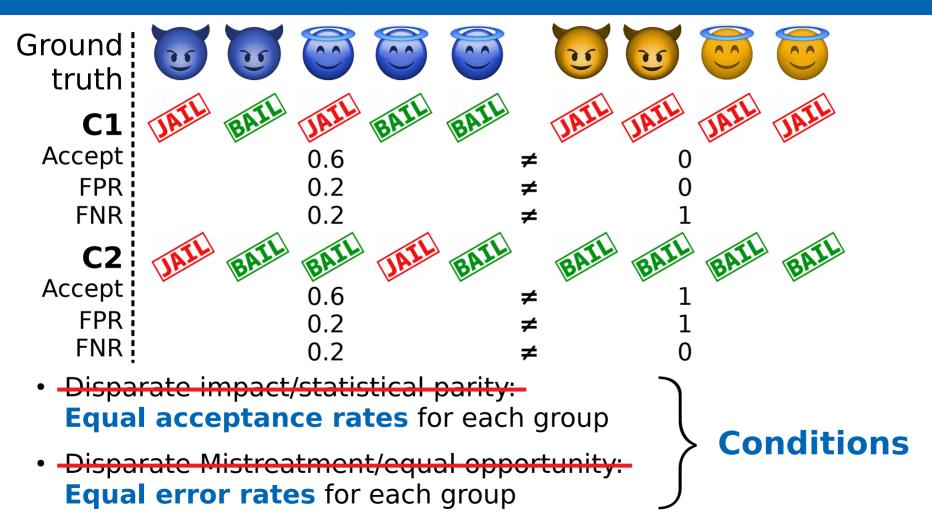


Are the classifiers fair?

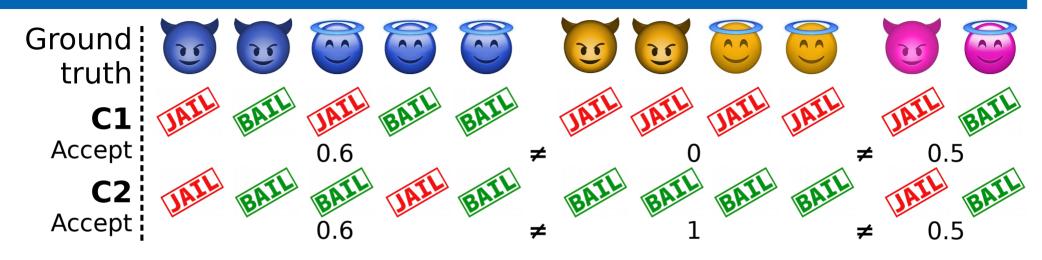
- C1 biased against group 2
- C2 **favors** group 2

Which one to choose?

Applying Current Fairness Notions



Current Ways to Measure Unfairness



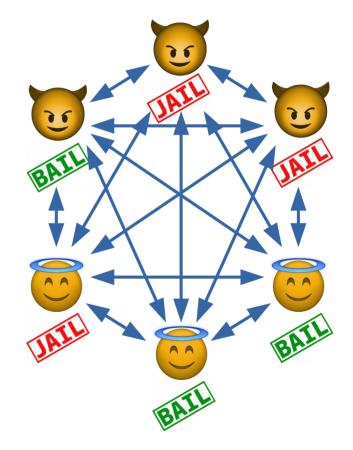
- Most popular measure: Difference between two group statistics
- E.g. |Acceptance rate 1 – Acceptance rate 2|

- Is this a good unfairness measure? What about ...
 - ... different group sizes?
 - ... more than two groups?
 - ... non-binary labels?

Individual Fairness

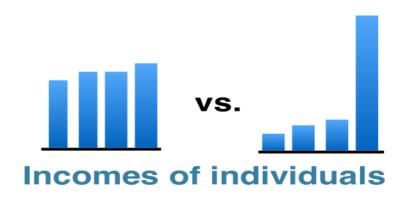
- So far we looked at group fairness
- There is also individual fairness
- How to measure it?

Need a principled unfairness measure



Inspiration: Inequality Indices

- Inequality indices studied in economics
- Measures of inequality in income distributions earned by a population
- Principled design



Contributions and Outline

- Define a principled measure of unfairness by adapting inequality indices to algorithmic decision making
 - Satisfies fairness axioms
 - Adaptable to different types of unfairness
- Reveal relationship between **individual and group fairness**

Inequality Indices

- Many different inequality indices:
 - Gini Index Gini $(x_1, ..., x_N) = \frac{1}{2N^2 \bar{x}} \sum_{i=1}^N \sum_{j=1}^N |x_i - x_j|$
 - Generalized Entropy Indices

$$GE_{\alpha}(x_1,\ldots,x_N) = \frac{1}{N\alpha(\alpha-1)} \sum_{i=1}^{N} \left[\left(\frac{x_i}{\bar{x}}\right)^{\alpha} - 1 \right] \quad \alpha \neq 0, 1$$

Designed to satisfy fairness axioms

Fairness Axioms

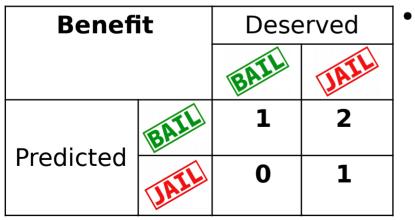
- Zero-normalization:
 - Zero inequality if everyone earns the same income
- Anonymity:
 - Inequality independent of identity of earners
- Population invariance:
 - Metric does not depend on size of population
- Transfer principle:
 - Income transfer from high- to low-earning individuals decreases inequality

 $I(\underline{\mathbf{I}}) = I(\underline{\mathbf{I}})$

Inequality decrease

Converting Algorithmic Decisions to Benefits

- Inequality indices designed to measure inequality in incomes
- For application in algorithmic decision making: Need to map deserved and predicted outcomes to benefits
- Example:



- We show: Suitable benefit functions capture fairness notions based on
 - Acceptance rate
 - FPR
 - FNR

Applying Inequality Indices

- Generalized Entropy Index ($\alpha = 2$): $GE_2(b_1, \dots, b_N) = \frac{1}{2N} \sum_{i=1}^N \left[\left(\frac{b_i}{\overline{b}} \right)^2 - 1 \right]$
- Inequalities:
 - C1: 0.25
 - C2: 0.12 \rightarrow less unfair

Individual unfairness

Applying Inequality Indices: Group Fairness

Ground truth Image: Comparison of the comparison of the

- Replacing individual benefits with groups' mean benefits (b')
- Generalized Entropy, **between-group** component:

$$GE_{between}(b'_{1},...,b'_{N}) = \frac{1}{2N} \sum_{i=1}^{N} \left[\left(\frac{b'_{i}}{\bar{b}} \right)^{2} - 1 \right]$$

- Between-group inequalities:
 - C1: 0.04
 - C2: 0.02 \rightarrow less group-unfair

Contributions and Outline

- Define a principled measure of unfairness using inequality indices
 - Satisfies fairness axioms
 - Adaptable to different types of fairness
- Reveal relationship between **individual and group fairness**

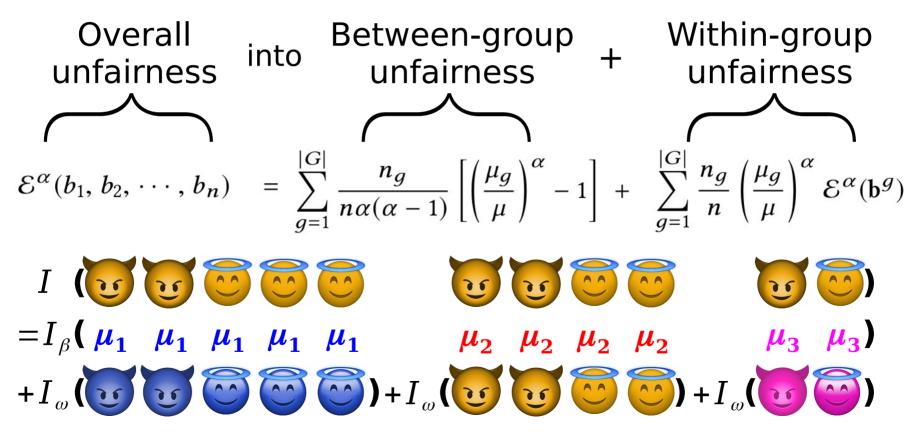
Connecting Individual and Group Fairness

- The first solution was measuring unfairness between individuals instead of groups
- Some inequality indices are subgroup decomposable: Overall (individual) inequality is the sum of inequality I(b)=
 - **Between** (means of) subgroups
 - Within each subgroup $I_{\omega}(b)$
- Not satisfied by all indices, **Generalized Entropy** family does

 $I_{\beta}(b)$ +

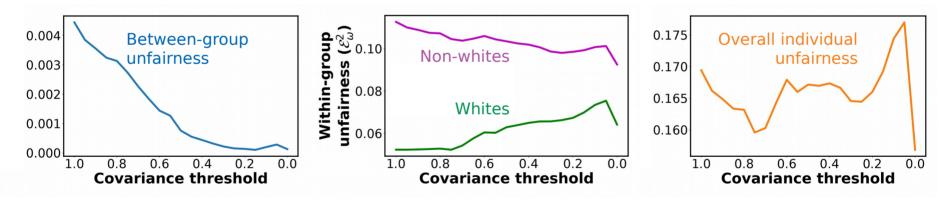
Decomposing Unfairness

SD allows decomposition of



Fairness Tradeoffs via Decomposition

- Prior work on unfairness in machine learning: Focussed on detecting and eliminating discrimination
- Ignores fairness tradeoffs



Eliminating between-group unfairness can increase within-group or overall individual unfairness

Summary

- Introduce Inequality indices as a principled measure of algorithmic unfairness
- Take a unified approach to measuring unfairness where overall individual unfairness is decomposed into between- and within-group unfairness
- Future work: Training models to eliminate overall individual and within-group unfairness