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Algorithmic Decision Making

Algorithms assist and automate human decision making
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Decisions have social implications



Potential for Unfairness
COMPAS: Recidivism risk prediction tool
Machine Bias

There's software used across the country to predict future
criminals. And it's biased against blacks.

Risk of white defendants underestimated and risk
of black defendants overestimated by algorithm



Unfairness in Recidivism Risk Prediction
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Are the classifiers fair?

Which one

- C1 biased against group 2 to choose?

- C2 favors group 2
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Current Ways to Measure Unfairness
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* Most popular measure: « Is this a good unfairness
Difference between measure? What about ...

two group statistics - ... different group sizes?
 E.g. |Acceptance rate 1 - ... more than two groups?

- Acceptance rate 2| - ... non-binary labels?



Individual Fairness

* So far we looked at group fairness
 There is also individual fairness

« How to measure it?

Need a principled
unfairness measure




Inspiration: Inequality Indices

* Inequality indices studied in economics

 Measures of inequality in income distributions
earned by a population

* Principled design
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Incomes of individuals



Contributions and Outline

 Define a principled measure of unfairness by adapting
inequality indices to algorithmic decision making

- Satisfies fairness axioms
- Adaptable to different types of unfairness

« Reveal relationship between individual and group fairness



Inequality Indices

 Many different inequality indices:

- Gini Index
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 Designed to satisfy fairness axioms



Fairness Axioms

e Zero-normalization:

- Zero inequality if everyone earns the same income
« Anonymity:
- Inequality independent of identity of earners

 Population invariance: |(ll“) = I(l“l ““)

- Metric does not depend on size of population Inequality

« Transfer principle: decrease

. . [ 1]
- Income transfer from high- to low-earning /I

individuals decreases inequality




Converting Algorithmic Decisions to Benefits

* Inequality indices designed to measure inequality in incomes

* For application in algorithmic decision making:
Need to map deserved and predicted outcomes to benefits
« Example:
Benefit Deserved |* We show: Suitable benefit functions

capture fairness notions based on

- Acceptance rate
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Applying Inequality Indices
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* Generalized Entropy Index (a = 2):
GE,(b,,...,by) = 2

* Inequalities:

- C1: 0.25 Individual

- C2:0.12 - less unfair unfairness



Applying Inequality Indices: Group Fairness
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* Replacing individual benefits with groups’ mean benefits (b’)
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 Between-group inequalltles.

- C1: 0.04
- C2: 0.02

- less group-unfair
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Contributions and Outline

« Reveal relationship between individual and group fairness



Connecting Individual and Group Fairness

* The first solution was measuring unfairness between
individuals instead of groups

« Some inequality indices are subgroup decomposable:
Overall (individual) inequality is the sum of inequality J(b)=
- Between (means of) subgroups I,(b)+
- Within each subgroup I,(b)

* Not satisfied by all indices, Generalized Entropy family does



Decomposing Unfairness

 SD allows decomposition of

Overall . ‘ Between-group Within-group
unfairness '"t° unfairness T unfairness
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Fairness Tradeoffs via Decomposition

* Prior work on unfairness in machine learning:

Focussed on detecting and eliminating discrimination

Ignores fairness tradeoffs
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Eliminating between-group unfairness can increase
within-group or overall individual unfairness



* Introduce Inequality indices as a principled measure
of algorithmic unfairness

 Take a unified approach to measuring unfairness
where overall individual unfairness is decomposed
into between- and within-group unfairness

* Future work: Training models to eliminate overall
individual and within-group unfairness
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