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Algorithmic Decision Making

Algorithms assist and automate human decision making

      Decisions have social implications



Potential for Unfairness

COMPAS: Recidivism risk prediction tool

Risk of white defendants underestimated and risk 
of black defendants overestimated by algorithm



Are the classifiers fair?

– C1 biased against group 2
– C2 favors group 2

Unfairness in Recidivism Risk Prediction

Ground 
truth

C1

C2

Which one 
to choose?



● Disparate impact/statistical parity:
Equal acceptance rates for each group

● Disparate Mistreatment/equal opportunity:
Equal error rates for each group

Applying Current Fairness Notions

Ground 
truth

C1
Accept

FPR
FNR

C2
Accept

FPR
FNR

     0.6           ≠                  0
      0.2       ≠                  0
     0.2         ≠                  1

     0.6           ≠                  1
      0.2       ≠                  1
     0.2         ≠                  0

} Conditions



● Most popular measure: 
Difference between
two group statistics

● E.g. |Acceptance rate 1
     – Acceptance rate 2|

Current Ways to Measure Unfairness

Ground 
truth

C1
Accept

C2
Accept

     0.6           ≠                  0

     0.6           ≠                  1

● Is this a good unfairness 
measure? What about …

– … different group sizes?

– … more than two groups?

– … non-binary labels?

≠    0.5

≠    0.5



● So far we looked at group fairness

● There is also individual fairness

● How to measure it?

Need a principled
unfairness measure

Individual Fairness



● Inequality indices studied in economics

● Measures of inequality in income distributions 
earned by a population

● Principled design

Inspiration: Inequality Indices



Contributions and Outline

● Define a principled measure of unfairness by adapting
inequality indices to algorithmic decision making

– Satisfies fairness axioms

– Adaptable to different types of unfairness

● Reveal relationship between individual and group fairness



Inequality Indices

● Many different inequality indices:

– Gini Index

– Generalized Entropy Indices

● Designed to satisfy fairness axioms

GEα(x1 , ... , xN ) =
1

N α(α−1)
∑
i=1

N

[( x i

x̄ )
α

−1 ] α ≠ 0,1

Gini(x1 , ... , xN) =
1

2N2 x̄
∑
i=1

N

∑
j=1

N

|x i−x j|



Fairness Axioms

● Zero-normalization:

– Zero inequality if everyone earns the same income

● Anonymity:

– Inequality independent of identity of earners

● Population invariance:

– Metric does not depend on size of population

● Transfer principle:

– Income transfer from high- to low-earning
individuals decreases inequality

I(       ) = I(               )

Inequality
decrease 



Converting Algorithmic Decisions to Benefits

● Inequality indices designed to measure inequality in incomes

● For application in algorithmic decision making:
Need to map deserved and predicted outcomes to benefits

● Example:

     Benefit    Deserved

Predicted

    1    2

    0    1

● We show: Suitable benefit functions 
capture fairness notions based on
– Acceptance rate
– FPR
– FNR
– …



Applying Inequality Indices

● Generalized Entropy Index (α = 2): 

● Inequalities:

– C1: 0.25

– C2: 0.12 → less unfair

GE2(b1 , ... ,bN) =
1
2N

∑
i=1

N

[(bi

b̄ )
2

−1]

Ground 
truth

C1

C2

  1 2   0    1     1 1   1    0     0    1     1

  1 2   1    0     1 2   2    1     1    1     1

Individual 
unfairness



Applying Inequality Indices: Group Fairness

● Replacing individual benefits with groups’ mean benefits (b’)

● Generalized Entropy, between-group component: 

● Between-group inequalities:

– C1: 0.04

– C2: 0.02 → less group-unfair

Ground 
truth

C1

C2

  1 1   1    1     1    0.5 0.5 0.5  0.5     1     1

  1 1   1    1     1    1.5 1.5 1.5  1.5    1     1

GEbetween(b'1 , ... ,b'N) =
1
2N

∑
i=1

N

[(b'ib̄ )
2

−1]



Contributions and Outline

● Define a principled measure of unfairness using
inequality indices

– Satisfies fairness axioms

– Adaptable to different types of fairness

● Reveal relationship between individual and group fairness



Connecting Individual and Group Fairness

● The first solution was measuring unfairness between 
individuals instead of groups

● Some inequality indices are subgroup decomposable:
 

Overall (individual) inequality is the sum of inequality

– Between (means of) subgroups

– Within each subgroup

● Not satisfied by all indices, Generalized Entropy family does

I (b)=

Iβ(b)+

Iω(b)



Decomposing Unfairness
● SD allows decomposition of

(    )     (    )     (    )

(       )

=Iβ

I

(       )μ1 μ3

+ Iω

μ3μ2

+ Iω + Iω

μ1 μ1 μ1 μ1 μ2 μ2 μ2

Overall
unfairness into

Between-group
unfairness

Within-group
unfairness+} } }



Fairness Tradeoffs via Decomposition

● Prior work on unfairness in machine learning:
Focussed on detecting and eliminating discrimination

● Ignores fairness tradeoffs

Eliminating between-group unfairness can increase 
within-group or overall individual unfairness

Between-group
unfairness

Overall individual
unfairnessNon-whites

Whites



Summary

● Introduce Inequality indices as a principled measure
of algorithmic unfairness

● Take a unified approach to measuring unfairness 
where overall individual unfairness is decomposed
into between- and within-group unfairness

● Future work: Training models to eliminate overall 
individual and within-group unfairness
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