How machines learn

- By training over historical data
- Example task: Predict who will return loan

Learning challenge: Learn a decision boundary (W) in the feature space separating the two classes

Predict who will return loans

Predict who will return loans

Optimal (most accurate / least loss) linear boundary
 But, how do machines find (compute) it?

Learning (computing) the optimal boundary

Define & optimize a loss (accuracy) function

The loss function captures inaccuracy in prediction

$$L(\mathbf{w}) = \sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 \qquad \qquad L(\mathbf{w}) = \sum_{i=1}^{N} -\log p(y_i | \mathbf{x}_i, \mathbf{w})$$

 Minimize (optimize) it over all examples in training data minimize L(w)

Central challenge in machine learning

- Finding loss function that capture prediction loss, yet be efficiently optimized
- Many loss functions used in learning are convex

Convex-boundary based loss functions

Squared loss
$$\sum_{i=1}^{N} (y_i - d_{\mathbf{w}}(\mathbf{x}_i))^2$$
Logistic loss
$$-\sum_{i=1}^{N} \log(1 + e^{-y_i d_{\mathbf{w}}(\mathbf{x}_i)})$$
SVM loss
$$||\mathbf{w}||^2 + C \sum_{i=1}^{N} \max(0, 1 - y_i d_{\mathbf{w}}(\mathbf{x}_i))$$

Predict who will return loans

Optimal (most accurate / least loss) linear boundary
 But, how do machines find (compute) it?
 The boundary was computed using min ∑(y_i − d_w(x_i))²

How to learn to avoid discrimination

- Specify discrimination measures as constraints on learning
- Optimize for accuracy under those constraints

minimize $L(\mathbf{w})$

subject to
$$P(\hat{y} \neq y | z = 0) = P(\hat{y} \neq y | z = 1)$$

The constraints embed ethics & values when learning

No free lunch: Additional constraints lower accuracy
 Tradeoff between performance & ethics (avoid discrimination)

A few observations

• Any discrimination measure could be a constraint $minimize L(\mathbf{w})$

 $\begin{array}{ll} \textit{subject to} & P(\hat{y}|\mathbf{x},z) = P(\hat{y}|\mathbf{x}) \\ & P(\hat{y}=1|z=0) = P(\hat{y}=1|z=1) \\ & P(\hat{y}\neq y|z=0) = P(\hat{y}\neq y|z=1) \end{array}$

Might not need all constraints at the same time
 E.g., drop disp. impact constraint when no bias in data
 When avoiding disp. impact / mistreatment, we could achieve higher accuracy without disp. treatment

Key technical challenge

How to learn efficiently under these constraints?

 $\begin{array}{ll} \mbox{minimize } L(\mathbf{w}) \\ \mbox{subject to} & P(\hat{y}=1|z=0) = P(\hat{y}=1|z=1) \end{array}$

 $\begin{array}{ll} \mbox{minimize } L(\mathbf{w}) \\ \mbox{subject to} & P(\hat{y} \neq y | z = 0) = P(\hat{y} \neq y | z = 1) \end{array}$

Problem: The above formulations are not convex!
 Can't learn them efficiently

Need to find a better way to specify the constraints
 So that loss function under constraints remains convex

Disparate impact constraints: Intuition

$$P(\hat{y} = 1 | z = 0) = P(\hat{y} = 1 | z = 1)$$

Limit the differences in the acceptance (or rejection) ratios across members of different sensitive groups

Disparate impact constraints: Intuition

A proxy measure for $P(\hat{y} = 1 | z = 0) = P(\hat{y} = 1 | z = 1)$ Limit the differences in the average strength of acceptance and rejection across members of different sensitive groups

Specifying disparate impact constraints

□ Instead of requiring: $P(\hat{y} = 1 | z = 0) = P(\hat{y} = 1 | z = 1)$

 Bound covariance between items' sensitive feature values and their signed distance from classifier's decision boundary to less than a threshold

$$\left|\frac{1}{N}\sum_{i=1}^{N} \left(\mathbf{z}_{i} - \bar{\mathbf{z}}\right) \mathbf{w}^{T} \mathbf{x}_{i}\right| \leq \mathbf{c}$$

Learning classifiers w/o disparate impact

Previous formulation: Non-convex, hard-to-learn minimize $L(\mathbf{w})$ subject to $P(\hat{y} = 1 | z = 0) = P(\hat{y} = 1 | z = 1)$

New formulation: Convex, easy-to-learn

minimize $L(\mathbf{w})$

subject to
$$\frac{1}{N} \sum_{i=1}^{N} (\mathbf{z}_i - \bar{\mathbf{z}}) \mathbf{w}^T \mathbf{x}_i \le \mathbf{c}$$

 $\frac{1}{N} \sum_{i=1}^{N} (\mathbf{z}_i - \bar{\mathbf{z}}) \mathbf{w}^T \mathbf{x}_i \ge -\mathbf{c}$

A few observations

- Our formulation can be applied to any convexmargin (loss functions) based classifiers
 hinge-loss, logistic loss, linear and non-linear SVM
- Can easily change our formulation to optimize for fairness under accuracy constraints
 - Useful in practice, when you want to be fair but have business necessity to meet a certain accuracy threshold

Specifying mistreatment constraints

Idea: Avg. misclassification distance from boundary for both groups should be the same

Specifying mistreatment constraints Feature 2 $\min(0, y_i d_{\mathbf{w}}(\mathbf{x}_i))$ Concave $(d_w(x) \text{ is affine})$ Feature 1

Idea: Avg. misclassification distance from boundary for both groups should be the same

Rewriting mistreatment constraints

$$\min \quad \sum_{i=1}^{N} (y_i - d_{\mathbf{w}}(\mathbf{x}_i))^2$$

s.t.
$$P(\text{ytrue} \neq \text{ypred} \mid \mathbf{Q}) = P(\text{ytrue} \neq \text{ypred} \mid \mathbf{C})$$

Rewriting mistreatment constraints

$$\min \sum_{i=1}^{N} (y_i - d_{\mathbf{w}}(\mathbf{x}_i))^2$$
s.t.
$$-\epsilon \leq \frac{1}{|\sigma^i|} \sum_{\sigma^i} \min(0, y_i d_{\mathbf{w}}(\mathbf{x}_i)) - \frac{1}{|\varphi|} \sum_{\varphi} \min(0, y_i d_{\mathbf{w}}(\mathbf{x}_i)) \leq \epsilon$$

$$\underbrace{ \text{Concave}}_{P(\text{ytrue} \neq \text{ypred} \mid \sigma^i)} \underbrace{ \text{Concave}}_{P(\text{ytrue} \neq \text{ypred} \mid \varphi)}$$

Can be solved efficiently

Using Disciplined Convex-Concave Programming
 DCCP [Shen, Diamond, Gu, Boyd, 2016]

Learning classifiers w/o disparate mistreatment

New formulation: Convex-concave, can learn efficiently using convex-concave programming

$$\begin{array}{ll} \text{minimize} & L(\mathbf{w}) \\ \text{subject to} & \frac{-N_1}{N} \sum_{i=1}^{N_0} g_{\mathbf{w}}(y_i, \mathbf{x}_i) + \frac{N_0}{N} \sum_{i=1}^{N_1} g_{\mathbf{w}}(y_i, \mathbf{x}_i) \leq \mathbf{c} \\ & \frac{-N_1}{N} \sum_{i=1}^{N_0} g_{\mathbf{w}}(y_i, \mathbf{x}_i) + \frac{N_0}{N} \sum_{i=1}^{N_1} g_{\mathbf{w}}(y_i, \mathbf{x}_i) \geq -\mathbf{c} \end{array}$$

All misclassifications

False negatives

$$\begin{split} g_{\mathbf{w}}(y, \mathbf{x}) &= \min\left(0, \frac{1+y}{2}yd_{\mathbf{w}}(\mathbf{x})\right), \text{ or } \\ g_{\mathbf{w}}(y, \mathbf{x}) &= \min\left(0, \frac{1-y}{2}yd_{\mathbf{w}}(\mathbf{x})\right), \end{split}$$

 $g_{\mathbf{w}}(y, \mathbf{x}) = min(0, yd_{\mathbf{w}}(\mathbf{x})),$

False positives

Evaluation: Recidivism risk estimates

Recidivism: To re-offend within a certain time

COMPAS risk assessment tool

- Assign recidivism risk score to a criminal defendant
- Score used to advise judges' decision
- ProPublica gathered COMPAS assessments
 - □ Broward Country, FL for 2013-14
 - □ Features: arrest charge, #prior offenses, age,...
 - Class label: 2-year recidivism

Key evaluation questions

Do traditional classifiers suffer disparate mistreatment?

Can our approach help avoid disparate mistreatment?

Disparity in mistreatment

Trained logistic regression for recidivism prediction

Race	FPR	FNR
Black	34%	32%
White	15%	55%

- False positive: Non-recidivating person wrongly classified as recidivating
- False negative: Recidivating person wrongly classified as non-recidivating

Key evaluation questions

Do traditional classifiers suffer disparate mistreatment?
 Yes! Considerable disparity in both FPR and FNR

Can our approach help avoid disparate mistreatment?

Removing disparate mistreatment

Traditional classifiers without constraints

Removing disparate mistreatment

Introducing our FPR and FNR Constraints

Key evaluation questions

Do traditional classifiers suffer disparate mistreatment?
 Yes! Considerable disparity in both FPR and FNR

Can our approach help avoid disparate mistreatment?
 Yes! For a small loss in accuracy

From Parity to Preference-based Discrimination Measures [NIPS 17]

Measures envy-free discrimination

Preferred treatment allows group-conditional boundaries

- Yet, ensure they are envy-free
 No lowering the bar to affirmatively select certain user groups
- Can be defined at individual or group-level
- More formally:

$$P(\hat{y} = 1 \mid X_{z=0}, W_{z=0}) \ge P(\hat{y} = 1 \mid X_{z=0}, W_{z=1})$$
$$P(\hat{y} = 1 \mid X_{z=1}, W_{z=1}) \ge P(\hat{y} = 1 \mid X_{z=1}, W_{z=0})$$

Learning preferred treatment classifiers

Preferred treatment subsumes parity treatment
 Every parity treatment classifier offers preferred treatment

Preferred treatment constraint is weaker than parity
 Suffers lower cost of fairness

Measures bargained discrimination

- Preferred impact inspired by bargaining solutions in game-theory
- Disagreement (default) solution is parity!
 Both groups try to avoid tragedy of parity
- Selects pareto-optimal boundaries over group accuracies

More formally:

 $P(\hat{y} \neq y \mid X_{z=0}, W) \ge P(\hat{y} \neq y \mid X_{z=0}, W_{parity})$ $P(\hat{y} \neq y \mid X_{z=1}, W) \ge P(\hat{y} \neq y \mid X_{z=1}, W_{parity})$