
How machines learn

q By training over historical data
q Example task: Predict who will return loan

q Learning challenge: Learn a decision boundary (W) 
in the feature space separating the two classes 
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Predict who will return loans



Predict who will return loans

q Optimal (most accurate / least loss) linear boundary
q But, how do machines find (compute) it? 



q Define & optimize a loss (accuracy) function
q The loss function captures inaccuracy in prediction

q Minimize (optimize) it over all examples in training data

q Central challenge in machine learning 
q Finding loss function that capture prediction loss, yet be 

efficiently optimized
q Many loss functions used in learning are convex

Learning (computing) the optimal boundary



Convex-boundary based loss functions

Squared loss

Logistic loss

SVM loss



Predict who will return loans

q Optimal (most accurate / least loss) linear boundary
q But, how do machines find (compute) it?

q The boundary was computed using



How to learn to avoid discrimination
q Specify discrimination measures as constraints on 

learning
q Optimize for accuracy under those constraints

q The constraints embed ethics & values when learning

q No free lunch: Additional constraints lower accuracy
q Tradeoff between performance & ethics (avoid discrimination)



A few observations
q Any discrimination measure could be a constraint

q Might not need all constraints at the same time
q E.g., drop disp. impact constraint when no bias in data
q When avoiding disp. impact / mistreatment, we could 

achieve higher accuracy without disp. treatment



Key technical challenge
q How to learn efficiently under these constraints?

q Problem: The above formulations are not convex!
q Can’t learn them efficiently

q Need to find a better way to specify the constraints
q So that loss function under constraints remains convex



Disparate impact constraints: Intuition
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Limit the differences in the acceptance (or rejection) ratios 
across members of different sensitive groups



Disparate impact constraints: Intuition

Feature 1
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Limit the differences in the average strength of acceptance 
and rejection across members of different sensitive groups

A proxy measure for 



Specifying disparate impact constraints
q Instead of requiring: 

q Bound covariance between items’ sensitive feature 
values and their signed distance from classifier’s 
decision boundary to less than a threshold



Learning classifiers w/o disparate 
impact

q Previous formulation: Non-convex, hard-to-learn

q New formulation: Convex, easy-to-learn



A few observations
q Our formulation can be applied to any convex-

margin (loss functions) based classifiers
q hinge-loss, logistic loss, linear and non-linear SVM

q Can easily change our formulation to optimize for 
fairness under accuracy constraints
q Useful in practice, when you want to be fair but have 

business necessity to meet a certain accuracy threshold



Specifying mistreatment constraints

Idea: Avg. misclassification distance from boundary for 
both groups should be the same



Specifying mistreatment constraints

Idea: Avg. misclassification distance from boundary for 
both groups should be the same

Concave
(dw(x) is affine)



Rewriting mistreatment constraints

P(ytrue ≠ ypred | ♀) = P(ytrue ≠ ypred | ♂)



Rewriting mistreatment constraints

Concave Concave

q Can be solved efficiently
q Using Disciplined Convex-Concave Programming 

q DCCP [Shen, Diamond, Gu, Boyd, 2016]

P(ytrue ≠ ypred | ♂) P(ytrue ≠ ypred | ♀)



Learning classifiers w/o disparate 
mistreatment
q New formulation: Convex-concave, can learn 

efficiently using convex-concave programming

All misclassifications

False negatives

False positives



Evaluation: Recidivism risk estimates
q Recidivism: To re-offend within a certain time

q COMPAS risk assessment tool
q Assign recidivism risk score to a criminal defendant
q Score used to advise judges' decision

q ProPublica gathered COMPAS assessments
q Broward Country, FL for 2013-14
q Features: arrest charge, #prior offenses, age,...
q Class label: 2-year recidivism



Key evaluation questions
q Do traditional classifiers suffer disparate mistreatment?

q Can our approach help avoid disparate mistreatment?



Disparity in mistreatment
q Trained logistic regression for recidivism prediction

q False positive: Non-recidivating person wrongly 
classified as recidivating

q False negative: Recidivating person wrongly 
classified as non-recidivating

Race FPR FNR
Black 34% 32%

White 15% 55%



Key evaluation questions
q Do traditional classifiers suffer disparate mistreatment?

q Yes! Considerable disparity in both FPR and FNR

q Can our approach help avoid disparate mistreatment?



Removing disparate mistreatment
q Traditional classifiers without constraints



Removing disparate mistreatment
q Introducing our FPR and FNR Constraints



Key evaluation questions
q Do traditional classifiers suffer disparate mistreatment?

q Yes! Considerable disparity in both FPR and FNR

q Can our approach help avoid disparate mistreatment?
q Yes! For a small loss in accuracy



From Parity to Preference-based 
Discrimination Measures [NIPS ‘17]



Measures envy-free discrimination
q Preferred treatment allows group-conditional boundaries

q Yet, ensure they are envy-free
q No lowering the bar to affirmatively select certain user groups

q Can be defined at individual or group-level 

q More formally:
P(ŷ = 1 | Xz=0, Wz=0) ≥ P(ŷ = 1 | Xz=0, Wz=1)
P(ŷ = 1 | Xz=1, Wz=1) ≥ P(ŷ = 1 | Xz=1, Wz=0)



Learning preferred treatment classifiers
Minimize  Lz=0(Wz=0) + Lz=1(Wz=1)
Subject to

P(ŷ = 1 | Xz=0, Wz=0) ≥ P(ŷ = 1 | Xz=0, Wz=1)
P(ŷ = 1 | Xz=1, Wz=1) ≥ P(ŷ = 1 | Xz=1, Wz=0)

q Preferred treatment subsumes parity treatment
q Every parity treatment classifier offers preferred treatment

q Preferred treatment constraint is weaker than parity
q Suffers lower cost of fairness



Measures bargained discrimination
q Preferred impact inspired by bargaining solutions in 

game-theory

q Disagreement (default) solution is parity!
q Both groups try to avoid tragedy of parity

q Selects pareto-optimal boundaries over group accuracies

q More formally:
P(ŷ ≠ y | Xz=0, W) ≥ P(ŷ ≠ y | Xz=0, Wparity)
P(ŷ ≠ y | Xz=1, W) ≥ P(ŷ ≠ y | Xz=1, Wparity)


