Discrimination Discovery

The discrimination discovery task at a glance

Given a large database of historical decision records,

find discriminatory situations and practices.

Discrimination discovery scenario

D. Pedreschi, S. Ruggieri and F. Turini (2008). Discrimination-Aware Data Mining. In KDD, pp. 560-568.

The German credit score dataset

A small dataset used in many papers about discrimination (like Zachary's karate club for networks people)

N = 1,000 records of bank account holders

Class label: good/bad creditor (grant or deny a loan)

Attributes: *numeric/interval-scaled*: duration of loan, amount requested, number of installments, age of requester, existing credits, number of dependents; *nominal*: result of past credits, purpose of credit, personal status, other parties, residence since, property magnitude, housing, job, other payment plans, own telephone, foreign worker; *ordinal*: checking status, saving status, employment

German credit score dataset: <u>https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)</u>

Defining potentially discriminated (PD) groups

A subset of attribute values are **perceived as potentially discriminatory** based on background knowledge.

Potentially discriminated groups are people with those attribute values.

Example:

- Women (misogyny)
- Ethnic minority (*racism*) or minority language
- Specific age range (*ageism*)
- Specific sexual orientation (*homophobia*)

Discrimination and combinations of attribute values

Discrimination can be a result of several joint characteristics (attribute values) which are not discriminatory by themselves

Thus, the object of discrimination should be described by a conjunction of attribute values:

Known as Itemsets

Association and classification rules

Association rules are if/then statements that help uncover relationships between seemingly unrelated data in a relational database.

In a classification rule, Y is a class item and X contains no class items.

$X \rightarrow Y$

Definition: Association Rule

Let **D** be database of transactions e.g.

Transaction ID	Items
2000	A, B, C
1000	A, C
4000	A, D
5000	B, E, F

- Let I be the set of items that appear in the database, e.g., I = {A,B,C,D,E,F}
- A rule is defined by $X \to Y$, where $X \subset I$, $Y \subset I$, and $X \cap Y = \emptyset$

- e.g.: $\{B,C\} \rightarrow \{A\}$ is a rule

Definition: Association Rule

- Association Rule
 - An implication expression of the form X →
 Y, where X and Y are non-overlapping itemsets
 - Example:
 {Milk, Diaper} → {Beer}
- Rule Evaluation Metrics
 - Support (s)
 - Fraction of transactions that contain both X and Y
 - Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example:

 $\{Milk, Diaper\} \rightarrow Beer$

$$s = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{|\mathsf{T}|} = \frac{2}{5} = 0.4$$
$$c = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{\sigma(\text{Milk}, \text{Diaper})} = \frac{2}{3} = 0.67$$

Computing support and confidence

TID	date	items_bought
100	10/10/99	{F,A,D,B}
200	15/10/99	{D,A,C,E,B}
300	19/10/99	$\{C,A,B,E\}$
400	20/10/99	{B,A,D}

What is the *support* and *confidence* of the rule: $\{B,D\} \rightarrow \{A\}$

- Support: percentage of tuples that contain $\{A,B,D\} = 75\%$
- Confidence:

 $\frac{\text{number of tuples that contain } \{A, B, D\}}{\text{number of tuples that contain } \{B, D\}} = 100\%$

Association-rule mining task

Given a set of transactions **D**, the goal of association rule mining is to find **all** rules having

- support ≥ *minsup* threshold
- confidence > minconf threshold

Beyond the scope of the current course!

Direct discrimination

Direct discrimination implies rules or procedures that impose 'disproportionate burdens' on minorities

Potentially Discriminatory (PD) rules are any classification rule of the form:

A, $B \rightarrow C$

where A is a PD group (B is called a "context")

Example:

```
gender="female", saving_status="no known savings" \rightarrow credit=no
```


Favoritist PD rules

Is unveiled by looking at PD rules of the form

 $\mathsf{A},\,\mathsf{B}\to\mathsf{C}$

where C grants some benefit and A refers to a favored group.

Example:

gender="male", savings="no known savings" \rightarrow credit=yes

Evaluating PD rules through the extended lift

Remembering that $conf(X \rightarrow Y) = support(X \rightarrow Y) / support(X)$

We define the **extended lift with respect to B** of rule A, $B \rightarrow C$ as: elift_B(A, B \rightarrow C) = conf(A, B \rightarrow C) / conf(B \rightarrow C)

The rules we care about are PD rules such that:

- A is a protected group (e.g. female, black)
- B is a context (e.g. lives in San Francisco)
- C is an outcome (usually negative, e.g., deny a loan)

The concept of α -protection

For a given threshold α , we say that PD rule A, B \rightarrow C, involving a PD group A in a context B for an outcome C, is α -protective if:

 $elift_B(A, B \rightarrow C) = conf(A, B \rightarrow C) / conf(B \rightarrow C) \le \alpha$

Otherwise, when $elift_B(A, B \rightarrow C) > \alpha$, then we say that

A, $B \rightarrow C$ is an α -discriminatory rule

Relation of α -protection and group representation

For a given threshold α , we say that PD rule A, B \rightarrow C,

involving a PD group A in a context B for a (usually bad) outcome C, is α -protective if:

 $elift_B(A, B \rightarrow C) = conf(A, B \rightarrow C) / conf(B \rightarrow C) \le \alpha$

Note that:

 $elift_B(A, B \rightarrow C) = elift_B(B, C \rightarrow A) = conf(B, C \rightarrow A) / conf(B \rightarrow A)$

This means extended lift is the ratio between the proportion of the disadvantaged group A in context B for (bad) outcome C, over the overall proportion of A in B.

Direct discrimination example

Rule (a):Rule (b):city="NYC"race="black", city="NYC" \rightarrow benefit=deny \rightarrow benefit=denywith confidence 0.25with confidence 0.75elift 3.0

Additional (discriminatory) element increases the rule confidence up to 3 times.

According to α -protection method, if the threshold α =3 is fixed then the rule (b) is classified as discriminatory

Real-world example from German credit dataset

Fixing α =3:

(B) saving status = "no known savings" \rightarrow conf. credit = deny 0.18 (A) personal status = "female div/sep/mar", saving status = "no known savings" \rightarrow conf. elift credit = deny 0.27 1.52

Rule A is α -protective.

Real-world example from German credit dataset

Fixing α =3: (B) purpose = "used car" \rightarrow credit = deny conf. (A) age = "52.6+", personal status = "female div/sep/mar", purpose = "used conf. elift car" \rightarrow credit = deny 1.00 6.06

Rule A is α -discriminatory.