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Recap: When-to-post problem setup

Broadcasters’ posts as 
a counting process N(t)
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Recap: Measuring Visibility

rij(t) = 0
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Recap: Maximizing Visibility

Minimize (quadratic) loss:

Maximize time spent at the top:
Rank

Posting rate
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Today: Evaluating broadcasting strategies

Task: Implementing strategies

Metrics:

Ø Average rank

Ø Time at the top

Simulated
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Working of the simulator

src_id: 0 src_id: 1
(Poisson with rate 1.0)

sink_id: 1000



How to implement a strategy?

src_id: 0

src_id: 1

sink_id: 1000
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event = None



How to implement a strategy?

src_id: 0

src_id: 1

sink_id: 1000
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event = Event(event_id=1, time_delta=5, cur_time=5,
src_id=0, sink_ids=[1000])



How to implement a strategy?

src_id: 0

src_id: 1

sink_id: 1000
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event = Event(event_id=2, time_delta=2.5, cur_time=7.5,
src_id=1, sink_ids=[1000])



How to implement a strategy?

src_id: 0

src_id: 1

sink_id: 1000
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event = Event(event_id=2, time_delta=2.5, cur_time=7.5,
src_id=1, sink_ids=[1000])

Updated!



How to implement a strategy?

src_id: 0

src_id: 1

sink_id: 1000
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event = Event(event_id=2, time_delta=2.5, cur_time=7.5,
src_id=1, sink_ids=[1000])

always measured 
from last self post.



How to implement a strategy?

src_id: 0

src_id: 1

sink_id: 1000
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event = Event(event_id=3, time_delta=7.5, cur_time=15,
src_id=1, sink_ids=[1000])

Repeats to the end.
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Broadcasting Strategies

1. Poisson

2. Hawkes

3. RedQueen

4. Smart Poisson

Already implemented.

This lecture.

To implement.

To implement.



Poisson broadcaster: already implemented
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Poisson broadcaster: already implemented
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Use self.random_state
for repeatable 
experiments and 
debugging.

If this is the beginning of 
the simulation or if the post 
was by this broadcaster, 
return a new sample.

No else branch: not returning a value
means do not change old time. 
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Hawkes broadcaster: another example

Initializing and saving parameters

Calculating

Ignore unless it was our event or the 1st event

Ogata’s thinning algorithm

Return       from our own post 



Recap: RedQueen broadcaster
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t1

r(t)

tt2 t3 t4

t1 + Δ1 t2 + Δ2 t3 + Δ3 t4 + Δ4 mini ti + Δi

Superposition principle

Δi exp( c )

Ø Minimizes loss: Ø For the task: 

Ø Sampling using Superposition:



RedQueen Broadcaster implementation
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RedQueen Broadcaster implementation

This is how rank evolves.
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RedQueen Broadcaster implementation

Return infinite if we do not plan to post.
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RedQueen Broadcaster implementation

mini ti + Δi

Δi exp( 1.0 )
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Smarter than Poisson Broadcaster

Heuristic to improve time at top:

Ø Do not post if already on top.

Ø If not on top, then post at a steady 
pace to let bursts of others’ posts pass 
(e.g., breaking news).

Ø Contrast: always maintaining low rank. 

time
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Smarter than Poisson Broadcaster

Using a flag to figure out if on top or not.

time
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Smarter than Poisson Broadcaster

Return infinite if we do not plan to post.

time
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Smarter than Poisson Broadcaster

To be implemented.

time



26

Live Coding

Ø Show execution of simulation

Ø Diagnostic plots

Ø Evaluation metrics
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Evaluation

RedQueen Smart Poisson

Top-1 57 ± 3 58 ± 4

Average rank 59 ± 6 67 ± 10

Number of posts 61 ± 3 62 ± 4
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Happy coding!

Ø Drop me an e-mail at utkarshu@mpi-sws.org
Ø Skype: utkarsh.upadhyay

Questions?

mailto:utkarshu@mpi-sws.org

