
HUMAN-CENTERED MACHINE LEARNING

Algorithms for
Smart broadcasting

http://courses.mpi-sws.org/hcml-ws18/

2

Recap: When-to-post problem setup

Broadcasters’ posts as
a counting process N(t)

t

N1(t)

t

M1(t)

t

N2(t)

t

Nn(t)

…

Users’ feeds as sum of
counting processes M(t)

M(t) = AT N(t)

Mn(t)

…

3

Recap: Measuring Visibility

rij(t) = 0

Post by broadcaster u
Post by other broadcasters

Ra
nk

ed
 st

or
ie

s

Position of the highest ranked tweet by
broadcaster i in follower j’s wall

Ol
de

r t
w

ee
ts

rij(t’) = 4 rij(t’’) = 0

…. .

t

M(t)

4

Recap: Maximizing Visibility

Minimize (quadratic) loss:

Maximize time spent at the top:
Rank

Posting rate

5

Today: Evaluating broadcasting strategies

Task: Implementing strategies

Metrics:

Ø Average rank

Ø Time at the top

Simulated

6

Working of the simulator

src_id: 0 src_id: 1
(Poisson with rate 1.0)

sink_id: 1000

How to implement a strategy?

src_id: 0

src_id: 1

sink_id: 1000

7

event = None

How to implement a strategy?

src_id: 0

src_id: 1

sink_id: 1000

8

event = Event(event_id=1, time_delta=5, cur_time=5,
src_id=0, sink_ids=[1000])

How to implement a strategy?

src_id: 0

src_id: 1

sink_id: 1000

9

event = Event(event_id=2, time_delta=2.5, cur_time=7.5,
src_id=1, sink_ids=[1000])

How to implement a strategy?

src_id: 0

src_id: 1

sink_id: 1000

10

event = Event(event_id=2, time_delta=2.5, cur_time=7.5,
src_id=1, sink_ids=[1000])

Updated!

How to implement a strategy?

src_id: 0

src_id: 1

sink_id: 1000

11

event = Event(event_id=2, time_delta=2.5, cur_time=7.5,
src_id=1, sink_ids=[1000])

always measured
from last self post.

How to implement a strategy?

src_id: 0

src_id: 1

sink_id: 1000

12

event = Event(event_id=3, time_delta=7.5, cur_time=15,
src_id=1, sink_ids=[1000])

Repeats to the end.

13

Broadcasting Strategies

1. Poisson

2. Hawkes

3. RedQueen

4. Smart Poisson

Already implemented.

This lecture.

To implement.

To implement.

Poisson broadcaster: already implemented

14

Poisson broadcaster: already implemented

15

Use self.random_state
for repeatable
experiments and
debugging.

If this is the beginning of
the simulation or if the post
was by this broadcaster,
return a new sample.

No else branch: not returning a value
means do not change old time.

16

Hawkes broadcaster: another example

Initializing and saving parameters

Calculating

Ignore unless it was our event or the 1st event

Ogata’s thinning algorithm

Return from our own post

Recap: RedQueen broadcaster

17

t1

r(t)

tt2 t3 t4

t1 + Δ1 t2 + Δ2 t3 + Δ3 t4 + Δ4 mini ti + Δi

Superposition principle

Δi exp(c)

Ø Minimizes loss: Ø For the task:

Ø Sampling using Superposition:

RedQueen Broadcaster implementation

18

19

RedQueen Broadcaster implementation

This is how rank evolves.

20

RedQueen Broadcaster implementation

Return infinite if we do not plan to post.

21

RedQueen Broadcaster implementation

mini ti + Δi

Δi exp(1.0)

22

Smarter than Poisson Broadcaster

Heuristic to improve time at top:

Ø Do not post if already on top.

Ø If not on top, then post at a steady
pace to let bursts of others’ posts pass
(e.g., breaking news).

Ø Contrast: always maintaining low rank.

time

23

Smarter than Poisson Broadcaster

Using a flag to figure out if on top or not.

time

24

Smarter than Poisson Broadcaster

Return infinite if we do not plan to post.

time

25

Smarter than Poisson Broadcaster

To be implemented.

time

26

Live Coding

Ø Show execution of simulation

Ø Diagnostic plots

Ø Evaluation metrics

27

Evaluation

RedQueen Smart Poisson

Top-1 57 ± 3 58 ± 4

Average rank 59 ± 6 67 ± 10

Number of posts 61 ± 3 62 ± 4

28

Happy coding!

Ø Drop me an e-mail at utkarshu@mpi-sws.org
Ø Skype: utkarsh.upadhyay

Questions?

mailto:utkarshu@mpi-sws.org

