Viral marketing
with Stochastic optimal control of TPP

HUMAN-CENTERED MACHINE LEARNING
http://courses.mpi-sws.org/hcml-ws18/
Maximizing activity in a social network

Can we steer users’ behavior to maximize activity in a social network?
Endogenous and exogenous events

Exogenous activity
Users’ actions due to drives external to the network

Endogenous activity
Users’ responses to other users’ actions in the network
Multidimensional Hawkes process

For each user u, actions as a counting process $N_u(t)$

Intensities or rates (Actions per time unit)

$$\lambda^*(t) = \mu_0 + A \int_0^t \kappa(t - s) dN(s)$$

User influence matrix

Non-negative kernel (memory)

Exogenous actions

Endogenous actions
Steering endogenous actions

\[\lambda^*(t) = \mu_0 + A \int_0^t \kappa(t-s) dN(s) + A \int_0^t \kappa(t-s) dM(s) \]

Intensities of directly incentivized actions

\[\mathbb{E}[dM(t)|\mathcal{H}(t)] = u(t) dt \]

[Zarezade et al., 2018]
Cost to go & Bellman’s principle of optimality

Optimization problem

\[
\begin{aligned}
\text{minimize} & \quad \mathbb{E}(N,M)(t_0,t_f) \left[\phi(\lambda(t_f)) + \int_{t_0}^{t_f} \ell(\lambda(t), u(t)) \, dt \right] \\
\text{subject to} & \quad u_i(t) \geq 0, \quad \forall t \in (t_0, t_f], \quad i = 1, \ldots, n
\end{aligned}
\]

Dynamics defined by Jump SDEs

\[
d\lambda(t) = [w\mu_0 - w\lambda(t)] \, dt + A \, dN(t) + A \, dM(t)
\]

To solve the problem, we first define the corresponding optimal cost-to-go:

\[
J(\lambda(t), t) = \min_{u(t,t_f)} \mathbb{E}(N,M)(t,t_f) \left[\phi(\lambda(t_f)) + \int_t^{t_f} \ell(\lambda(s), u(s)) \, ds \right]
\]

The cost-to-go, evaluated at \(t_0 \), recovers the optimization problem!

[Zarezade et al., 2018]
Cost to go & Bellman’s principle of optimality

This is a stochastic optimal control problem for jump SDEs (we know how to solve this!)

To solve the problem, we first define the corresponding optimal cost-to-go:

\[
J(\lambda(t), t) = \min_{u(t, t_f)} \mathbb{E}(N, M)(t, t_f) \left[\phi(\lambda(t_f)) + \int_t^{t_f} \ell(\lambda(s), u(s)) \, ds \right]
\]

The cost-to-go, evaluated at \(t_0\), recovers the optimization problem!

[Zarezade et al., 2018]
Lemma. The optimal cost-to-go satisfies Bellman’s Principle of Optimality

\[J(\lambda(t), t) = \min_{u(t,t+dt)} \left\{ \mathbb{E}_{(N,M)}(t,t+dt) \left[J(\lambda(t+dt), t+dt) \right] + \ell(\lambda(t), u(t)) \right\} dt \]

\[dJ(\lambda(t), t) = J(\lambda(t+dt), t+dt) - J(\lambda(t), t) \]

\[0 = \min_{u(t,t+dt)} \left\{ \mathbb{E}_{(N,M)}(t,t+dt) \left[dJ(\lambda(t), t) \right] + \ell(\lambda(t), u(t)) \right\} dt \]

\[d\lambda(t) = [w\mu_0 - w\lambda(t)] dt + A dN(t) + A dM(t) \]

Hamilton-Jacobi-Bellman (HJB) equation

\[\text{Partial differential equation in } J \]

(\text{with respect to } \lambda \text{ and } t) \quad [\text{Zarezade et al., 2018}]
Solving the HJB equation

Consider a quadratic loss

\[
\ell(\lambda(t), u(t)) = -\frac{1}{2} \lambda^T(t) Q \lambda(t) + \frac{1}{2} u^T(t) S u(t)
\]

Rewards organic actions

Penalizes directly incentivizes actions

We propose \(J(\lambda(t), t) \) and then show that the optimal intensity is:

\[
u^*(t) = -S^{-1} \left[A^T g(t) + A^T H(t) \lambda(t) + \frac{1}{2} \text{diag}(A^T H(t) A) \right]
\]

Computed offline once!

Closed form solution to a first order ODE

Solution to a matrix Riccati differential equation

\[\text{[Zarezade et al., 2018]}\]
The Cheshire algorithm

Intuition
Steering actions means sampling action user & times from $u^*(t)$

More in detail
Since the intensity function $u^*(t)$ is stochastic, we sample from it using:

- Superposition principle
- Standard thinning

It only requires sampling $1^T N(t_f)$ from inhomog. Poisson!

[Zarezade et al., 2018]
Experiments on real data

Five Twitter datasets (users) where actions are tweets and retweets

1. Fit model parameters

\[d\lambda(t) = [w\mu_0 - w\lambda(t)] \, dt + A \, dN(t) \]

↑ exogeneous rate ↓ influence matrix

2. Simulate steering endogenous actions

\[d\lambda(t) = [w\mu_0 - w\lambda(t)] \, dt + A \, dN(t) + A \, dM(t) \]

↑ directly incentivized tweets chosen by each method

[Zarezade et al., 2018]
Evaluation metrics & baselines

Evaluation metrics

- \(\bar{N}(t) = \sum_{u \in \mathcal{V}} \mathbb{E}[N_u(t)] \)
 - Average number of not directly incentivized tweets
- \(\bar{t}_{30K} \)
 - Average time to reach 30,000 not directly incentivized tweets

Baselines

- MSC [Farajtabar et al., NIPS ’16]
- OPL [Farajtabar et al., NIPS ’14]
- PRK (Pagerank)
- DEG (Out-degree)

[Zarezade et al., 2018]
Performance vs. time

Cheshire (in red) triggers 100%-400% more posts than the second best performer.

[Zarezade et al., 2018]
Performance vs. # of incentivized tweets

Cheshire (in red) reaches 30K tweets 20-50% faster than the second best performer

Series, $M(t_f) \approx 5k$

[Zarezade et al., 2018]
Why Cheshire?

“the Cheshire Cat has the ability to appear and disappear in any location”

Alice’s Adventures in Wonderland, Lewis Carroll