Stochastic optimal control

of Marked Temporal Point Processes

HUMAN-CENTERED MACHINE LEARNING

http://courses.mpi-sws.org/hcml-ws18/

What is optimal control used for?

Optimal control aims to find an *optimal action* to solve a *task* in an *environment*

- https://www.youtube.com/watch?v=Lphi7EeU37s
- https://www.youtube.com/watch?v=vjSohj-lclc Boston dynamics I
- https://www.youtube.com/watch?v=fUyU3IKzoio
 Boston dynamics II

One needs to accurately model how the environment reacts to the actions via:

- (Stochastic) differential equations
- (Stochastic) difference equations

Optimal control on different problem settings

Example I: Viral marketing

Agent

Social media user

Environment

Followers' Feed

Forbes

For Brands And PR: When Is The Best Time To Post On Social Media?

THE HUFFINGTON POST

The Best Times to Post on Social Media

When to post to maximize views or likes?

 $\mu_i(t) = u(t) \longrightarrow N_i(t)$

Design (optimal) posting intensity Marks (feedback) given by environment

Example II: Spaced repetition

When to review to maximize recall probability?

Example III: Suppressing epidemics

Agent

Health policy (Resource allocation)

Environment

Population (social network)

Who to treat and when to reduce infections?

$$\lambda_i(t) \longrightarrow N_i(t)$$

Design (optimal) treatment intensities Marks

Stochastic optimal control of SDEs with jumps

If the problem dynamics can be expressed using SDEs with jumps:

Optimal control of marked temporal point processes

→ HJB equation [Zarezade et al., 2017, 2018; Tabibian et al., 2017; Kim et al. 2018; Wang et al., 2018]

→ Variational inference [Wang et al., 2017]

Key idea:

Policy is characterized by an intensity function!

Stochastic optimal control of SDEs with jumps

If the problem dynamics can be expressed using SDEs with jumps:

Policy is characterized by an intensity function!

Strategy to solve the when-to-post problem

Representation of broadcasters and feeds

Broadcasters' posts as a counting process N(t)

Users' feeds as sum of counting processes M(t)

Broadcasters and feeds

Given a broadcaster i and her followers

$$\boldsymbol{M}_{i}(t) = A^T \boldsymbol{N}(t) - A_i N_i(t)$$

$$\gamma_{j i}(t) = \gamma_j(t) - \mu_i(t)$$

Feed due to other broadcasters

11

Definition of visibility function

Definition of visibility function

Visibility dynamics in a FIFO feed (I)

Visibility dynamics in a FIFO feed (II)

 $r_{ij}(t+dt) = (r_{ij}(t)+1)dM_{j\setminus i}(t)(1-dN_i(t)) + 0 + r_{ij}(t)(1-dM_{j\setminus i}(t))(1-dN_i(t))$

OUR GOAL:

Optimize $r_{ij}(t)$ over time, so that it is small, by controlling $dN_i(t)$ through the intensity $\mu_i(t)$

15

Feed dynamics

$$N_{i}(t) \qquad M_{j \setminus i}(t) = M(t) \implies \gamma_{j \setminus i}(t) = \lambda(t)$$

We consider **a** general intensity:

inhomogeneous Poisson)

 $\lambda^*(t) = \lambda_0(t) + \alpha \int_0^t g(t-s)dN(s)$ **Deterministic Stochastic** self-excitation arbitrary intensity Jump stochastic differential equation (SDE) $\int d\lambda^*(t) = [\lambda'_0(t) + w\lambda_0(t) - w\lambda^*(t)] dt + \alpha dN_i(t)$

(e.g. Hawkes,

Feed dynamics

The when-to-post problem

The when-to-post problem

When-to-post for a single follower

$$\begin{array}{l} \text{Optimization} \\ \text{problem} \end{array} \left\{ \begin{array}{ll} \underset{u(t_{0},t_{f}]}{\text{minimize}} & \mathbb{E}_{(N,M)(t_{0},t_{f}]} \left[\phi(r(t_{f})) + \int_{t_{0}}^{t_{f}} \ell(r(\tau), u(\tau)) \, d\tau \right] \\ \text{subject to} & u(t) \geq 0 \quad \forall t \in (t_{0},t_{f}], \end{array} \right. \\ \begin{array}{l} \text{Dynamics} \\ \text{defined by} \\ \text{Jump SDEs} \end{array} \left\{ \begin{array}{l} dr(t) = -r(t) \, dN(t) + dM(t) \\ d\lambda(t) = \left[\lambda_{0}'(t) + w\lambda_{0}(t) - w\lambda(t) \right] \, dt + \alpha \, dM(t) \end{array} \right. \end{array} \right.$$

To solve the optimization problem, we first define the **optimal cost-to-go:**

$$J(r(t), \lambda(t), t) = \min_{u(t, t_f]} \mathbb{E}_{(N, M)(t, t_f]} \left[\phi(r(t_f)) + \int_t^{t_f} \ell(r(\tau), u(\tau)) \, d\tau \right]$$

The cost-to-go, evaluated at t₀, recovers the optimization problem!²⁰

Bellman's Principle of Optimality

Lemma. The optimal cost-to-go satisfies Bellman's Principle of Optimality

 $J(r(t),\lambda(t),t) = \min_{u(t,t+dt]} \mathbb{E}\left[J(r(t+dt),\lambda(t+dt),t+dt)\right] + \ell(r(t),u(t)) dt$

Proof sketch

$$J(\gamma(t), r(t), t) = \min_{u(t,t_f]} \mathbb{E}_{(N,M)(t,t_f]} \left[\phi(r(t_f)) + \int_t^{t_f} \ell(r(\tau), u(\tau)) \, d\tau \right]$$

$$= \min_{u(t,t_f]} \mathbb{E}_{(N,M)(t,t_f]} \left[\phi(r(t_f)) + \int_t^{t+dt} \ell(r(\tau), u(\tau)) \, d\tau + \int_{t+dt}^{t_f} \ell(r(\tau), u(\tau)) \, d\tau \right]$$

$$= \min_{u(t,t_f]} \mathbb{E}_{(N,M)(t,t+dt]} \left[\mathbb{E}_{(N,M)(t+dt,t_f]} \left[\phi(r(t_f)) + \ell(t,r,u) \, dt + \int_{t+dt}^{t_f} \ell(r(\tau), u(\tau)) \, d\tau \right] \right]$$

$$= \min_{u(t,t+dt]} \min_{u(t+dt,t_f]} \mathbb{E}_{(N,M)(t,t+dt]} \left[\ell(r(t), \gamma(t), t) \, dt + \mathbb{E}_{(N,M)(t+dt,t_f]} \left[\phi(r(t_f)) + \int_{t+dt}^{t_f} \ell(r(\tau), u(\tau)) \, d\tau \right] \right]$$

$$= \min_{u(t,t+dt]} \mathbb{E}_{(N,M)(t,t+dt]} \left[J(\gamma(t+dt), r(t+dt), t+dt) \right] + \ell(r(t), u(t)) \, dt.$$

[Zarezade et al., 2017 & 2018

The Hamilton-Jacobi-Bellman (HJB) equation (I)

Bellman's Principle of Optimality

 $J(r(t), \lambda(t), t) = \min_{u(t, t+dt]} \mathbb{E}\left[J(r(t+dt), \lambda(t+dt), t+dt)\right] + \ell(r(t), u(t)) dt$

 $\int J(r(t+dt), \lambda(t+dt), t+dt) = J(r(t), \lambda(t), t) + dJ(r(t), \lambda(t), t)$

 $0 = \min_{u(t,t+dt]} \mathbb{E} \left[dJ(r(t),\lambda(t),t) \right] + \ell(r(t),u(t)) dt$ $\int_{d\lambda(t)} dr(t) = -r(t) dN(t) + dM(t)$ $d\lambda(t) = \left[\lambda'_0(t) + w\lambda_0(t) - w\lambda(t) \right] dt + \alpha dM(t)$

Hamilton-Jacobi-Bellman (HJB) equation equation (with respect to r, λ and t)²²

The Hamilton-Jacobi-Bellman (HJB) equation

$$0 = \min_{u(t,t+dt]} \mathbb{E} \left[dJ(r(t), \lambda(t), t) \right] + \ell(r(t), u(t)) dt$$

$$\int_{u(t,t+dt]} u(t) = \left[\lambda_{0}(t) + u\lambda_{0}(t) + dM(t) + dM(t) + d\lambda(t) + (\lambda(t), t) + \left[\lambda_{0}(t) + u\lambda_{0}(t) - u\lambda(t) \right] J_{\lambda}(r(t), \lambda(t), t) + \left[J(r(t) + 1, \lambda(t) + \alpha, t) - J(r(t), \lambda(t), t) \right] \lambda(t) + \min_{u(t,t+dt)} \ell(r(t), u(t)) + \left[J(0, \lambda(t), t) - J(r(t), \lambda(t), t) \right] u(t).$$

$$u^{*}(t) = q^{-1} \left[J(r(t), \lambda(t), t) - J(0, \lambda(t), t) \right]$$

$$u^{*}(t) = q^{-1} \left[J(r(t), \lambda(t), t) - J(0, \lambda(t), t) + \left[J(r(t) + 1, \lambda(t) + \alpha, t) - J(r(t), \lambda(t), t) \right] \lambda(t) \right] + \frac{1}{2} s(t) r^{2}(t) - \frac{1}{2} q^{-1} \left[J(r(t), \lambda(t), t) - J(0, \lambda(t), t) \right]^{2}$$

23

Solving the HJB equation

Consider a quadratic loss

$$\ell(r(t), u(t)) = \frac{1}{2} s(t) r^2(t) + \frac{1}{2} q u^2(t)$$

Favors some periods of times (e.g., times in which the follower is online) Trade-offs visibility and number of broadcasted posts

Then, it can be shown that the **optimal cost-to-go** is given by:

$$J(r(t),\lambda(t),t)=f(t)+\sqrt{s(t)/q}\,r(t)+\sum_{j=1}^m g_j(t)\lambda^j(t)$$

24

Solving the HJB equation

Given the cost

$$J(r(t),\lambda(t),t) = f(t) + \sqrt{s(t)/q} r(t) + \sum_{j=1}^{m} g_j(t)\lambda^j(t)$$

Then, we can readily compute the optimal intensity:

$$\begin{split} u^*(t) &= q^{-1} \left[J(r(t),\lambda(t),t) - J(0,\lambda(t),t) \right] \\ &= \sqrt{s(t)/q} \, r(t) \\ & \text{It only depends on the} \\ & \text{current visibility!} \end{split}$$

[Zarezade et al., 2017 & 2018]

25

The RedQueen algorithm

Consider s(t) = s \longrightarrow u*(t) = (s/q)^{1/2} r(t)

How do we sample the next time?

It only requires sampling M(t_f) times!

26

Experiments on real data

Consider 2,000 broadcasters (users) from Twitter

For each broadcaster:

Collect the other broadcasters' posted tweets during 2 months

Millions of users!

Experimental setup on real data

Experimental setup allows for a *truthful* what-if evaluation:

Evaluation metrics

Visibility over time

$$\int_0^T r(t)dt$$

Time at the top

$$\int_0^T \mathbb{I}(r(t) < 1) dt$$

Position over time =

Time at the top =

 $0x(t_2 - t_1) + 1x(t_3 - t_2) + 0x(t_4 - t_3) + 1x(t_5 - t_4) + 2x(t_6 - t_5)$ (t_2 - t_1) + 0 + (t_4 - t_3) + 0 + 0

29

Position over time

It achieves (i) 0.28x lower average position, in average, than the broadcasters' true posts and (ii) lower average position for 100% of the users.

Time at the top

It achieves (i) 3.5x higher time at the top, in average, than the broadcasters' true posts and (ii) higher time at the top for 99.1% of the users.

Example: a broadcaster in Twitter

Why RedQueen?

"Now, here, you see, it takes all the running you can do, to keep in the same place"

Through the Looking-Glass, Lewis Carroll

more at learning.mpi-sws.org