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Opinions in social media
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Use social media to sense opinions
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People’s opinion about 
political discourse

Investors’ sentiment 
about stocks

Brand sentiment 
and reputation
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What about opinion dynamics?

Complex stochastic 
processes 

(often over a network)
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Example of opinion dynamics

t = T

S D
means

D follows S
Christine

Bob

Beth

Joe

David

Expressed 
opinions

Beth is influential
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Model of opinion dynamics

Can we design a realistic
model that fits real 
fine-grained opinion traces?

Why this goal?

Identify opinion leaders

Predict (infer) opinions,
even if not expressed!

Sergey Bilak



Traditional models of opinion dynamics 

There are a lot of 
theoretical models of opinion dynamics, 
but…
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1. Do not distinguish between latent and 
expressed opinions

2. Opinions are updated sequentially
in discrete time

3. Difficult to learn from fine-grained 
data and thus inaccurate predictions
4. Focus on steady state, neglecting 
transient behavior



Key ideas of Marked TPP model

Latent opinions
vs

expressed opinions
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Informational and 
social influence

t
Alice’s latent 

opinion

Bob

Alice

t

Bob and Charly’s 
expressed
opinions

t

Alice’s 
expressed
opinions

Charly

t

Alice’s 
expressed
opinions

[De et al., NIPS 2016]
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Message representation

We represent messages using marked temporal 
point processes:

t = 0 t = T

t

Message:
TimeUser Sentiment

(mark)

NA(t)

NB(t)

NC (t)

Noisy observation of latent opinion
[De et al., NIPS 2016]



10

Message intensity

User’s
intensity

Messages on her 
own initiative Influence from 

user v on user u
Previous 

messages by user v
[De et al., NIPS 2016]

NA(t)

NB(t)

NC (t)

Memory

Haw
kes process



Sentiment distribution

Latent opinion

Sentiment:
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It depends on the 
recorded data Discrete (based on upvotes/downvotes):

Continuous (based on sentiment analysis):

[De et al., NIPS 2016]
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Stochastic process for (latent) opinions

User’s latent
opinion

User’s initial 
opinion

influence from 
user v on user u

Previous sentiment  
by user v

αAlice

xAlice(t)

m(t) m1
m2

m3

aBob,Alicem1

aChristine,Alicem2

>0, agree
<0, disagree

Memory

Bob

Alice

Christine

[De et al., NIPS 2016]
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Stubborness, conformity, and compromise

The model allows for:

Stubborn 
users

Conforming 
users

Compromised 
users
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Example: positive opinions win

Average opinionOpinions per node

t = 0 t=T t=∞
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Example: negative opinions win

Average opinionOpinions per node

t = 0 t=T t=∞
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Example: opinions get polarized

Average opinionOpinions per node
0.010.005 0.015

00

10

20

30

40

50

Time

N
o
d
e
-
I
D

 

 

-1.2

-0.8

-0.4

0.4

0.8

1.2

0.010.005 0.015

0

0
Time

Experimental

Theoretical

O
p
in
io
n
-T

ra
je
c
to

ry
→

#MW

t = 0 t=T t=∞



17

Model inference from opinion data

Message sentiments Message times

Markov 
property

[De et al., NIPS 2016]

(marks)

Events likelihood

Theorem. The maximum likelihood problem is
convex in the model parameters.

Sums and integrals 
in linear time!
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Opinion model as Jump SDEs

Proposition. The tuple (x*(t), λ*(t), N(t)) is a Markov 
process, whose dynamics are defined by the following 
marked jumped stochastic differential equations (SDEs)

Temporal influence

Informational 
influence

Expressed
opinions

Latent 
opinions

Message 
intensities

Network!

Network!

[De et al., NIPS 2016]
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Proof sketch of the proposition (I)

Let’s do it for one-dimensional Hawkes:
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Proof sketch of the proposition (II)
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Opinion forecasting

For forecasting, we compute conditional averages:

analytical solution (Th. 2)

Sources of RandomnessHistory up to t0

Otherwise:

numerical solution (Th. 4)

Sampling based solution

If

•
•
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Opinion forecasting
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The forecasted opinion becomes less accurate as T 
increases, as one may expect.

[De et al., NIPS 2016]


