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Information cascades: 
Terminating point process models 



An example: information cascade

Friggeri et al., 2014

They can have an impact 
in the off-line world 
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Information cascade representation

t = 0 t = T

t

Sharing event:

TimeUser Cascade

N1(t)

N2(t)

N3(t)

We represent an information cascade using 
terminating temporal point processes:

N4(t)

N5(t)



Information cascade intensity 
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N1(t)

N2(t)

N3(t)

N4(t)

N5(t)

Source
(given, not modeled)

Share only 
once Influence from 

user v on user u
Previous 

message by user v

Memory

Shares / follow-ups
(modeled)

[Gomez-Rodriguez et al., ICML 2011]



Model inference from multiple cascades
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Conditional 
intensities

Cascade log-likelihood

Maximum likelihood 
approach to find 

model parameters!

Theorem. For any choice of parametric memory, 
the maximum likelihood problem is convex in B.

Sum up log-likelihoods 
of multiple cascades!

[Gomez-Rodriguez et al., ICML 2011]
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Topic-sensitive intensities

Topic-modulated influence:

LDA weight 
for topic l

[Du et al., AISTATS 2013]
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Propagation over networks
with variable influence

#greece
retweets

T0

Dynamic influence

In some cases, influence change over time:

[Gomez-Rodriguez et al., WSDM 2013]
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Memetracker

[Leskovec et al., KDD ’09]
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Insights I: real world events

Youtube video: http://youtu.be/hBeaSfRCU4c

http://youtu.be/hBeaSfRCU4c
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Insights II: dynamic clusters

Youtube video: http://youtu.be/hBeaSfRCU4c

http://youtu.be/hBeaSfRCU4c


12

Beyond information cascades: 
Nonterminating point process models
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Recurrent events: beyond cascades

In general, especially in social networks:

Up to this point, we have 
assumed we can map each 
event to a cascade

Difficult to distinguish 
cascades in event data

Most cascades are
single nodes (or forests)

no likes
no comments

no shares



Recurrent events representation

[Farajtabar et al., NIPS 2014]

We represent shares using nonterminating 
temporal point processes:

t = 0 t = T

t

Recurrent event:

TimeUser

N1(t)

N2(t)

N3(t)

N4(t)

N5(t)
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Recurrent events intensity

User’s
intensity

Messages on her 
own initiative

[De et al., NIPS 2016]

Haw
kes process

N1(t)

N2(t)

N3(t)

N4(t)

N5(t)

Cascade sources!

Influence from 
user v on user u

Previous 
messages by user v

Memory
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Information cascades and network evolution: 
Nonterminating point process models
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Information propagation 
triggers new links

Cascade 1

Source

1 hour later

Recent empirical studies [Antoniades and Dovrolis, Myers & 
Leskovec] show that information cascades also change 
the structure of social networks:

Beyond information cascades (II)
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Co-evolution as interwoven point processes (I)

We model user’s retweet and link events as 
nonterminating and terminating counting processes:

t1 t2 t3 t4

t'1

NBob, Alice (t)

ABob, Alice(t)

Alice

Charly

Bob

Eva

Bob follows 
Alice

Bob retweets 
(is exposed to)
Alice

Key idea 
Both counting processes
have memory and depend
on each other

30 min later
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History of retweets and 
links up to t

Instantaneous
rates or intensities

Co-evolution as interwoven point processes (II)

Changes on 
retweets in [t, t+dt]

We characterize retweet and link counting processes 
using their respective conditional intensities:

They are 
coupled 

through the 
histories

Changes on 
links in [t, t+dt]
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Intensity for information propagation

Tweets on her 
own initiative

γBob, Alice (t)

Alice

Charly

Bob

Eva

NEva,Alice(t)

NCharly,Alice(t)

Propagation of peer influence over the network

David

Node u does 
not need to 

follow s!

Time-varying 
network topology
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Intensity for network evolution

Ensures a link is
created only once

Links on 
her own
initiative

Influence of retweet 
intensity on the link 

creation

NBob, Alice (t)

λBob, Alice(t)

Alice

Charly

Bob

Eva

Bob’s risk of 
following 
Alice

Bob retweets 
(is exposed to)
Alice
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Find optimal parameters using maximum 
likelihood estimation (MLE):

For the choice of information propagation and 
link intensities, the MLE problem above is 
parallelizable & convex.

Model inference from historical data
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Retweet and link coevolution
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The fitted model generate link and information diffusion 
events that coevolve similarly (in terms of cross-
covariance) as real events.

Average cross-covariance 
vs model parameters

Cross-covariance 
for two users
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Model checking

Link events Retweet events

The quantiles of the intensity integrals               
computed using the fitted intensities match the 
quantiles of the unit-rate exponential distribution
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https://en.wikipedia.org/wiki/Q-Q_plot
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Information diffusion prediction

Average rank Success probability

The model beats the predictions given by a standard 
Hawkes process
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Network properties & cascade patterns

Degree 
distributions

Can the model generate realistic macroscopic 
static and temporal network patterns and 
information cascades?

Network 
diameter

Level of triadic 
closure

Cascade size 
distribution

Cascade depth 
distribution

Cascade 
structure

Network Cascades
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Degree distributions

Poisson, α = 0 Power-law, α = 0.2
The higher the parameter α (or β), the closer the 
degree distribution is to a power-law
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Small (shrinking) diameters

Small connected 
components merge

Our model generate networks with small shrinking 
(or flattening) diameter over time, as observed 
empirically.

Diameter 
shrinks



29

Clustering coefficient

We can generate networks with different levels 
of triadic closure, as observed empirically
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Different type of networks

Erdos-Renyi, β = 0 Scale-free network, β = 0.8

Our model allows us to generate networks with 
very different structure

A

B
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Cascade patterns: size

cascade size
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As α (or β) increases, longer cascades become 
more seldom.
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Cascade patterns: depth

cascade depth
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As α (or β) increases, deeper cascades are more 
seldom, as observed in real cascade data.
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Cascade patterns: structure

The structure of the generated cascades becomes 
more realistic as α (or β) increases.

O
thers 


