Information propagation

with Temporal Point Processes

HUMAN-CENTERED MACHINE LEARNING

http://courses.mpi-sws.org/hcml-ws18/

MAX PLANCK INSTITUTE FOR SOFTWARE SYSTEMS

Information cascades: Terminating point process models

An example: information cascade

They can have an impact in the off-line world

theguardian

Click and elect: how fake news helped Donald Trump win a real election

Information cascade representation

We represent an information cascade using terminating temporal point processes:

Information cascade intensity

Model inference from multiple cascades

[Gomez-Rodriguez et al., ICML 2011]

Topic-sensitive intensities

Topic-modulated influence:

tagxedo.com

Dynamic influence

In some cases, influence change over time: #greece retweets

Sat Jun 16

Fri Jun 15

Propagation over networks with variable influence

Sun Jun 17

[Gomez-Rodriguez et al., WSDM 2013]

Mon Jun 18

Memetracker

Insights I: real world events

Insights II: dynamic clusters

Youtube video: <u>http://youtu.be/hBeaSfRCU4c</u>

Beyond information cascades: Nonterminating point process models

Recurrent events: beyond cascades

Up to this point, we have assumed we can map each event to a cascade

In general, especially in social networks:

Difficult to distinguish cascades in event data

BUSINESS INSIDER

He has stuck to his decision so far; his recent Facebook status read, "I just killed a pig and a goat."

GAWKER

Mark Zuckerberg Is Killing Progressively Larger Animals

Most cascades are single nodes (or *forests*)

Recurrent events representation

We represent shares using **nonterminating temporal point processes**:

Recurrent events intensity

Information cascades and network evolution: Nonterminating point process models

Beyond information cascades (II)

Recent empirical studies [Antoniades and Dovrolis, Myers & Leskovec] show that information cascades also change the structure of social networks:

Information propagation_{Cascade 1} triggers new links

Source 1

Co-evolution as interwoven point processes (I)

We model user's *retweet* and *link* events as nonterminating and terminating counting processes:

Bob retweets (is exposed to) Alice

Bob follows Alice

Key idea

Both counting processes have **memory** and **depend on each other**

Co-evolution as interwoven point processes (II)

We characterize retweet and link counting processes using their respective conditional intensities:

Intensity for information propagation

Intensity for network evolution

Model inference from historical data

Find *optimal* parameters using **maximum likelihood estimation (MLE)**:

For the choice of information propagation and link intensities, the MLE problem above is parallelizable & convex. 22

Retweet and link coevolution

The fitted model generate link and information diffusion events that coevolve similarly (in terms of crosscovariance) as real events.

Model checking

The quantiles of the intensity integrals $\int_{t_i}^{t_{i+1}} \lambda(t) dt$ computed using the fitted intensities match the quantiles of the unit-rate exponential distribution²⁴

Information diffusion prediction

The model beats the predictions given by a standard Hawkes process

Can the model generate realistic macroscopic static and temporal network patterns and information cascades?

Network	Cascades
Degree	Cascade size
distributions Network	Cascade depth
diameter	distribution
Level of triadic	Cascade
closure	structure

Degree distributions

The higher the parameter α (or β), the closer the degree distribution is to a power-law

Small (shrinking) diameters

Our model generate networks with small shrinking (or flattening) diameter over time, as observed empirically.

Clustering coefficient

We can generate networks with **different levels of triadic closure**, as observed empirically

Different type of networks

Erdos-Renyi, $\beta = 0$ Scale-free network, $\beta = 0.8$

Our model allows us to generate **networks with very different structure**

Cascade patterns: size

As α (or β) increases, **longer cascades become more seldom**.

Cascade patterns: depth

As α (or β) increases, **deeper cascades are more seldom**, as observed in real cascade data.

Cascade patterns: structure

The structure of the generated cascades becomes *more realistic* as α (or β) increases.