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Information cascades:
Terminating point process models



An example: information cascade
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Information cascade representation

We represent an information cascade using
terminating temporal point processes:
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Information cascade intensity
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Model inference from multiple cascades

Conditional Cascade log-likelihood
intensities

n T
A (1) 2= log N(ts) / N(r) dr
u=1 0
" Maximum likelihood
approach to find
g model parameters! ) Sum up log-likelihoods

of multiple cascades!
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Theorem. For any choice of parametric memory,
the maximum likelihood problem is convex in B.

[Gomez-Rodriguez et al., ICML 2011]



Topic-sensitive intensities

Topic-modulated influence:
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Dynamic influence

In some cases, influence change over time:
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Insights I: real world events
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Youtube video: http://youtu.be/hBeaSTRCU4c



http://youtu.be/hBeaSfRCU4c

Insights ll: dynamic clusters
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Youtube video: http://youtu.be/hBeaSTRCU4c



http://youtu.be/hBeaSfRCU4c

Beyond information cascades:
Nonterminating point process models
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Recurrent events: beyond cascades

Up to this point, we have
assumed we can map each
event to a cascade
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In general, especially in social networks:

Difficult to distinguish Most cascades are
cascades in event data single nodes (or forests)
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Recurrent events representation

We represent shares using nonterminating
temporal point processes:
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Recurrent events intensity

O "1t - : . S
D "t >
0 Nt . i R
N,(t) 0 R
Ns(t) 4 R

Memory
Cascade sources! T K
>

7 \
)‘Z (t) — :uu + Z bvu (t _ ti)
\_'_I \_'_I ’UE[m/ ‘eze?{v(t) ,

User’s Messages on her Pre!/ious
intensity  own initiative Influence from megsages by user v
user v on user u

1

$5920.4d s)MeH

[De et al_, NIPS 2016]



Information cascades and network evolution:
Nonterminating point process models
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Beyond information cascades (ll)

Recent empirical studies [Antoniades and Dovrolis, Myers &
Leskovec] sShow that information cascades also change

the structure of social networks:

Information propagation
triggers new links

Esteban Moro retweeted a Tweet you were mentioned in

Source
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Co-evolution as interwoven point processes ()

We model user’s retweet and link events as
nonterminating and terminating counting processes:
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Co-evolution as interwoven point processes (ll)

We characterize retweet and link counting processes
using their respective conditional intensities:
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Intensity for information propagation
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Intensity for network evolution
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Model inference from historical data

Find optimal parameters using maximum
likelihood estimation (MLE):
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For the choice of information propagation and
link intensities, the MLE problem above is
parallelizable & convex. 22



Retweet and link coevolution
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The fitted model generate link and information diffusion
events that coevolve similarly (in terms of cross-
covariance) as real events.
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Model checking
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Information diffusion prediction
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The model beats the predictions given by a standard
Hawkes process
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Network properties & cascade patterns

Can the model generate realistic macroscopic
static and temporal network patterns and
information cascades?

Network Cascades
Degree Cascade size
distributions distribution
Network Cascade depth
diameter distribution
Level of triadic Cascade
closure structure 26



Degree distributions
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The higher the parameter a (or B), the closer the
degree distribution is to a power-law

27



Small (shrinking) diameters
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Our model generate networks with small shrinking
(or flattening) diameter over time, as observed
empirically. *



Clustering coefficient
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We can generate networks with different levels
of triadic closure, as observed empirically
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Different type of networks
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Our model allows us to generate networks with
very different structure )



Cascade patterns: size
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As a (or B) increases, longer cascades become
more seldom.

percentage
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Cascade patterns: depth
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As a (or B) increases, deeper cascades are more
seldom, as observed in real cascade data.
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Cascade patterns: structure
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The structure of the generated cascades becomes
more realistic as a (or B) increases.
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