Introduction to Temporal Point Processes (II)

HUMAN-CENTERED MACHINE LEARNING
http://courses.mpi-sws.org/hcml-ws18/
Temporal Point Processes: Basic building blocks
Poisson process

Intensity of a Poisson process

\[\lambda^*(t) = \mu \]

Observations:

1. Intensity independent of history
2. Uniformly random occurrence
3. Time interval follows exponential distribution
Fitting a Poisson from (historical) timeline

\[
\lambda^*(t) = \mu
\]

\[
\mu^* = \arg \max_{\mu} 3 \log \mu - \mu T = \frac{3}{T}
\]
Sampling from a Poisson process

We sample using inversion sampling:

\[
\lambda^*(t) = \mu
\]

We would like to sample:

\[
t \sim \mu \exp(-\mu(t - t_3))
\]

We sample using inversion sampling:

\[
F_t(t) = 1 - \exp(-\mu(t - t_3)) \quad \Rightarrow \quad t \sim -\frac{1}{\mu} \log(1 - u) + t_3
\]

\[
P(F_t^{-1}(u) \leq t) = P(u \leq F_t(t)) = F_t(t)
\]
Inhomogeneous Poisson process

Intensity of an inhomogeneous Poisson process

\[\lambda^*(t) = g(t) \geq 0 \]

Observations:

1. Intensity independent of history
Fitting an inhomogeneous Poisson

Design \(g(t) \) such that max. likelihood is convex (and use CVX)
Nonparametric inhomogeneous Poisson process

Positive combination of (Gaussian) RFB kernels:

\[\lambda^*(t) = \sum_j \alpha_j k(t - t_j) \]
Sampling from an inhomogeneous Poisson

$\mu = \max g(t)$

Thinning procedure (similar to rejection sampling):

1. Sample t from Poisson process with intensity μ

 $t \sim -\frac{1}{\mu} \log(1 - u) + t_3$

2. Generate $u_2 \sim \text{Uniform}(0, 1)$

3. Keep the sample if $u_2 \leq \frac{g(t)}{\mu}$
Terminating (or survival) process

Intensity of a terminating (or survival) process

\[\lambda^*(t) = g^*(t)(1 - N(t)) \geq 0 \]

Observations:

1. Limited number of occurrences
Self-exciting (or Hawkes) process

Intensity of self-exciting (or Hawkes) process:

\[
\lambda^*(t) = \mu + \alpha \sum_{t_i \in \mathcal{H}(t)} \kappa_\omega(t - t_i)
\]

Observations:

1. Clustered (or bursty) occurrence of events
2. Intensity is stochastic and history dependent
Fitting a Hawkes process from a recorded timeline

\[\lambda_0 = \lambda^*(t_3) \]

\[\lambda^*(t_1) \lambda^*(t_2) \lambda^*(t_3) \ldots \lambda^*(t_n) \exp \left(-\int_0^T \lambda^*(\tau) \, d\tau \right) \]

\[\lambda^*(t) = \mu + \alpha \sum_{t_i \in \mathcal{H}(t)} \kappa_{\omega}(t - t_i) \]

The max. likelihood is jointly convex in \(\mu \) and \(\alpha \)

\[\text{maximize} \quad \sum_{i=1}^{n} \log \lambda^*(t_i) - \int_0^T \lambda^*(\tau) \, d\tau \]

(use CVX!)
Sampling from a Hawkes process

Thinning procedure (similar to rejection sampling):

1. Sample \(t \) from Poisson process with intensity \(\mu_3 \)

\[
U \sim Uniform(0, 1) \\
\log(1 - U) + t_3 \\
\frac{1}{\mu_3}
\]

Inversion sampling

2. Generate \(u_2 \sim Uniform(0, 1) \)

3. Keep the sample if \(u_2 \leq g(t) / \mu_3 \)
Building blocks to represent different dynamic processes:

Poisson processes:
\[\lambda^*(t) = \lambda \]

Inhomogeneous Poisson processes:
\[\lambda^*(t) = g(t) \]

Terminating point processes:
\[\lambda^*(t) = g^*(t)(1 - N(t)) \]

Self-exciting point processes:
\[\lambda^*(t) = \mu + \alpha \sum_{t_i \in \mathcal{H}(t)} \kappa_{\omega}(t - t_i) \]
Summary

Building blocks to represent different dynamic processes:

Poisson processes:
\[\lambda^*(t) = \lambda \]

Inhomogeneous Poisson processes:
\[\lambda (t) = g(t)(1 - N(t)) \]

Terminating point processes:

Self-exciitng point processes:
\[\lambda^*(t) = \mu + \alpha \sum_{t_i \in \mathcal{H}(t)} \kappa_\omega(t - t_i) \]

We know how to fit them and how to sample from them
Temporal Point Processes: Superposition
Superposition of processes

Sample each intensity + take minimum = Additive intensity

\[t = \min(\tau, \tau_1, \tau_2, \tau_3) \quad \Rightarrow \quad \lambda^*(t) = \mu + \alpha \sum_{t_i \in \mathcal{H}(t)} \kappa_\omega(t - t_i) \]
Mutually exciting process

Clumped occurrence affected by neighbors

\[\lambda^*(t) = \mu + \alpha \sum_{t_i \in \mathcal{H}_b(t)} \kappa_\omega(t - t_i) + \beta \sum_{t_i \in \mathcal{H}_c(t)} \kappa_\omega(t - t_i) \]
Mutually exciting terminating process

Clustered occurrence affected by neighbors

\[\lambda^*(t) = (1 - N(t)) \left(g(t) + \beta \sum_{t_i \in \mathcal{H}_c(t)} \kappa_\omega(t - t_i) \right) \]