Human-Centered ML Part II

HUMAN-CENTERED MACHINE LEARNING

http://courses.mpi-sws.org/hcml-ws18/

Lectures for Part II

Five lectures on fundamentals

- → Marked temporal Point Processes
- → Optimal control Reinforcement learning

Five lectures on applications

Information propagation

Information integrity

Evaluation for Part II

Paper reviewing assignments:

- → Only for lectures on applications
- → Due just before the lecture

Two coding assignments:

- → Information propagation From Dec 20 to Jan 17
- → Viral marketing From Jan 24 to Feb 5

Final exam: On Feb 7 (review on Feb 5)

Introduction to Temporal Point Processes (I)

HUMAN-CENTERED MACHINE LEARNING

http://courses.mpi-sws.org/hcml-ws18/

Many discrete events in continuous time

Online actions

Financial trading

Disease dynamics

Mobility dynamics

Variety of processes behind these events

Events are (noisy) observations of a variety of complex dynamic processes...

Example I: Information propagation

They can have an impact in the off-line world

theguardian

Click and elect: how fake news helped 7 Donald Trump win a real election

Example II: Knowledge creation

Example III: Human learning

Detailed event traces

Manuel Gomez Rodriguez updated his cover photo. April 17 at 1:14pm · ⊚

Pique-Longue, French Pyrenees Easter 2017

🖆 Like 🔲 Comment 🍌 Share

Mehrdad Farajtabar, Lili Yavis-Hound and 24 others

Rober Tab Pu 😂wow! Like · Reply · April 17 at 1:32pm

Detailed event traces

Warren Buffett 📀 @WarrenBuffett

Manuel Gomez Rodriguez updated his cover photo. April 17 at 1:14pm · ©

Warren is in the house.

Pique-Longue, French Pyrenees Easter 2017

The availability of event traces boosts a new generation of data-driven models and algorithms

Like	Comment	A Share		
1 🖸 Meh	rdad Farajtabar, Lili Ya	avis-Hound and 24 d	others	
Rol Like	per Tab Pu ☺wow! e · Reply · April 17 at 1	:32pm		
I Like	Comment rdad Farajtabar, Lili Ya ber Tab Pu Swow! a · Reply · April 17 at 1	Share avis-Hound and 24 d 32pm	others	

Aren't these event traces just time series?

What about aggregating events in *epochs*?

'Epoch 1'Epoch 2' Epoch 3

How long is each epoch? How to aggregate events per epoch? What if no event in one epoch? What about time-related queries?

Aren't these event traces just time series?

Temporal Point Processes: Intensity function

Temporal point processes

Temporal point process:

A random process whose realization consists of discrete events localized in time

Model time as a random variable

Likelihood of a timeline: $f^*(t_1) f^*(t_2) f^*(t_3) f^*(t) S^*(T)$

Problems of density parametrization (I)

It is difficult for model design and interpretability:

- 1. Densities need to integrate to 1 (i.e., partition function)
- **2.** Difficult to combine timelines

Problems of density parametrization (II)

Difficult to combine timelines:

Intensity function

Intensity:

Probability between [t, t+dt) but not before t

$$\lambda^*(t)dt = \frac{f^*(t)dt}{S^*(t)} \ge 0 \quad \Longrightarrow \quad \lambda^*(t)dt = \mathbb{E}[dN(t)|\mathcal{H}(t)]$$

Observation: $\lambda^*(t)$ It is a rate = # of events / unit of time ¹⁹

Advantages of intensity parametrization (I)

Suitable for model design and interpretable:

- 1. Intensities only need to be nonnegative
- 2. Easy to combine timelines

Advantages of intensity parametrization (II)

Easy to combine timeline:

Relation between f^* , F^* , S^* , λ^*

