Understanding and Accounting for Human Perceptions of Fairness in Algorithmic Decision Making

Nina Grgić-Hlača, Elissa M. Redmiles, Muhammad Bilal Zafar,

Krishna P. Gummadi and Adrian Weller

Machine-assisted Decision Making

Algorithms help people make decisions

Decision Making Pipeline

Example: Granting bail

Is it Fair to Use a Feature?

Normative approach

Prescribe how fair decisions ought to be made

Anti-discrimination laws

 Sensitive (race, gender) vs non-sensitive features

Descriptive approach

Describe human perceptions of fairness

Beyond discrimination?

- Father's criminal history
- Education
- Ice-cream preference

- Which features people perceive as fair to use?
- Why do people perceive some features as unfair?
- How to account for people's fairness perceptions?

- Which features people perceive as fair to use?
- Why do people perceive some features as unfair?
- How to account for people's fairness perceptions?

Assisting Bail Decisions

Case Study: COMPAS Tool

COMPAS Questionnaire

137 questions, 10 topics

Current criminal charges	Criminal attitudes
Criminal history	Neighborhood safety
Substance abuse	Criminal history of friends & family
Stability of employment	Quality of social life
Personality	Education & behavior in school

No questions about sensitive features!

Is it fair to use these features to make bail decisions?

Gathering Human Moral Judgments

- Fairness of using features for making bail decisions
- US criminal justice system US respondents
 - 196 Amazon Mechanical Turk master workers
 - 380 SSI survey panel respondents, census representative

Findings **consistent** across both samples

Is it Fair to Use these Features?

People consider **most** of the features **unfair**!

- Which features people perceive as fair to use?
- Why do people perceive some features as unfair?
- How to account for people's fairness perceptions?

- Which features people perceive as fair to use?
- Why do people perceive some features as unfair?
- How to account for people's fairness perceptions?

Hypothesis I: Latent Properties of Features

Relevant?	
Reliable?	
Volitional?	
Private?	
Causes Outcome?	
Causes Vicious Cycle?	
Causes Disparity	
in Outcomes?	
Caused by Sensitive	
Group Membership?	

What Makes a Feature (un)Fair to Use?

There is more to fairness than discrimination!

Hypothesis II: From Latent Properties to Fairness

Modeling Fairness Judgments

We can predict fairness judgments with 88% accuracy

We model a common fairness judgment heuristic

May be culturally dependent: interesting future work

- Which features people perceive as fair to use?
- Why do people perceive some features as unfair?
- How to account for people's fairness perceptions?

Take-aways

- **Q:** Is it **fair** to use a feature?
- A: Depends on the feature's latent properties!
 - Relevance
 - Reliability
 - Volitionality
 - Privacy
 - Causal relationships

Fairness beyond discrimination

- Which features people perceive as fair to use?
- Why do people perceive some features as unfair?
- How to account for people's fairness perceptions?

Accounting for Fairness Judgments

Goal: Train machine learning algorithms that

- Achieve high accuracy
- People perceive as fair

Prerequisite: measure these quantities

- We know how to measure accuracy
- How do we **measure perceived fairness**?

Quantifying Perceived Fairness

Fairness of using a feature

Fraction of people that consider using the feature fair

Fairness of using classifier

 Fraction of people that consider all of its features fair

Accounting for Fairness Judgments

Goal: Train machine learning algorithms that

- Achieve high accuracy
- People perceive as fair

Implement: Select subset of features that

 $\begin{array}{ll} \underset{S \subseteq \mathcal{F}}{\text{maximize}} & accuracy(\mathcal{S}) \\ \text{subject to} & unfairness(\mathcal{S}) \leq t \end{array}$

Perceived Fairness vs Accuracy

Intuition

- Adding features: higher accuracy, lower fairness
- Removing features: lower accuracy, higher fairness

There is a tradeoff between perceived fairness of features & accuracy

- Brute force
 - Train 2ⁿ classifiers, n = number of features

- Optimal Solution
- Not scalable! 30 features = more than 1 billion classifiers
- Is there an efficient alternative?

Submodular Optimization

- Feature usage unfairness is submodular & monotone
- Submodular cost submodular knapsack problem
 - Approximate using ISK algorithm (Iyer and Bilmes, NIPS 2013)

- Efficient & scalable approximation
- Near optimal results

Fair Inputs vs Fair Outputs

- Fairness of outputs: equal misclassification rates
- In the ProPublica COMPAS dataset:

Fair inputs → fair outputs

Take-aways

Understanding Human Perceptions of Fairness

- From latent properties to fairness judgments
- Fairness considerations go beyond discrimination

Accounting for Human Perceptions of Fairness

- Measure that captures perceptions of feature usage fairness
- Mechanism for selecting features perceived as fair

Bonus Slides - Understanding

Do people agree in their fairness judgments?

People often disagree in their fairness judgments

Causes of Disagreements in Fairness Judgments

How can we explain **disagreements** in fairness judgments?

Disagreements in Latent Property Assessments?

30

Causes of Disagreements in Fairness Judgments

How can we explain **disagreements** in fairness judgments?

Bonus Slides - Accounting

Fairness Properties - Monotonicity

- Feature unfairness is monotone non-decreasing
- Intuition
 - A set function is monotone nondecreasing if adding elements to a set cannot decrease its value
- Definition

 $g(\mathcal{F}_i \cup \{f\}) \ge g(\mathcal{F}_i),$ $\forall \mathcal{F}_i \subseteq \mathcal{F}, f \in \mathcal{F} \setminus \mathcal{F}_i$

Fairness Properties - Submodularity

- Feature unfairness is submodular
- Intuition
 - A set function is submodular if it exhibits diminishing marginal returns

• Definition

$g(\mathcal{F}_A \cup \{f\}) - g(\mathcal{F}_A) \ge g(\mathcal{F}_B \cup \{f\}) - g(\mathcal{F}_B),$ $\mathcal{F}_A \subseteq \mathcal{F}_B \subset \mathcal{F}, f \in \mathcal{F} \setminus \mathcal{F}_B$

ISK algorithm

Problem

 $\begin{array}{ll} \underset{S \subseteq \mathcal{F}}{\text{maximize}} & accuracy(\mathcal{S}) \\ \text{subject to} & unfairness(\mathcal{S}) \leq t \end{array}$

Maps to Submodular Cost Submodular Knapsack problem

Algorithm – Intuition

- Iteratively finding modular approximations of submodular functions
- Solving the resulting knapsack problems